Metamath Proof Explorer


Theorem eltg4i

Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion eltg4i
|- ( A e. ( topGen ` B ) -> A = U. ( B i^i ~P A ) )

Proof

Step Hyp Ref Expression
1 elfvdm
 |-  ( A e. ( topGen ` B ) -> B e. dom topGen )
2 eltg
 |-  ( B e. dom topGen -> ( A e. ( topGen ` B ) <-> A C_ U. ( B i^i ~P A ) ) )
3 1 2 syl
 |-  ( A e. ( topGen ` B ) -> ( A e. ( topGen ` B ) <-> A C_ U. ( B i^i ~P A ) ) )
4 3 ibi
 |-  ( A e. ( topGen ` B ) -> A C_ U. ( B i^i ~P A ) )
5 inss2
 |-  ( B i^i ~P A ) C_ ~P A
6 5 unissi
 |-  U. ( B i^i ~P A ) C_ U. ~P A
7 unipw
 |-  U. ~P A = A
8 6 7 sseqtri
 |-  U. ( B i^i ~P A ) C_ A
9 8 a1i
 |-  ( A e. ( topGen ` B ) -> U. ( B i^i ~P A ) C_ A )
10 4 9 eqssd
 |-  ( A e. ( topGen ` B ) -> A = U. ( B i^i ~P A ) )