| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfvdm |
|- ( A e. ( topGen ` B ) -> B e. dom topGen ) |
| 2 |
|
eltg |
|- ( B e. dom topGen -> ( A e. ( topGen ` B ) <-> A C_ U. ( B i^i ~P A ) ) ) |
| 3 |
1 2
|
syl |
|- ( A e. ( topGen ` B ) -> ( A e. ( topGen ` B ) <-> A C_ U. ( B i^i ~P A ) ) ) |
| 4 |
3
|
ibi |
|- ( A e. ( topGen ` B ) -> A C_ U. ( B i^i ~P A ) ) |
| 5 |
|
inss2 |
|- ( B i^i ~P A ) C_ ~P A |
| 6 |
5
|
unissi |
|- U. ( B i^i ~P A ) C_ U. ~P A |
| 7 |
|
unipw |
|- U. ~P A = A |
| 8 |
6 7
|
sseqtri |
|- U. ( B i^i ~P A ) C_ A |
| 9 |
8
|
a1i |
|- ( A e. ( topGen ` B ) -> U. ( B i^i ~P A ) C_ A ) |
| 10 |
4 9
|
eqssd |
|- ( A e. ( topGen ` B ) -> A = U. ( B i^i ~P A ) ) |