Description: A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 1open.1 | |- X = U. J |
|
| Assertion | eltopss | |- ( ( J e. Top /\ A e. J ) -> A C_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1open.1 | |- X = U. J |
|
| 2 | elssuni | |- ( A e. J -> A C_ U. J ) |
|
| 3 | 2 1 | sseqtrrdi | |- ( A e. J -> A C_ X ) |
| 4 | 3 | adantl | |- ( ( J e. Top /\ A e. J ) -> A C_ X ) |