Metamath Proof Explorer


Theorem eltp

Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of TakeutiZaring p. 17. (Contributed by NM, 8-Apr-1994) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypothesis eltp.1
|- A e. _V
Assertion eltp
|- ( A e. { B , C , D } <-> ( A = B \/ A = C \/ A = D ) )

Proof

Step Hyp Ref Expression
1 eltp.1
 |-  A e. _V
2 eltpg
 |-  ( A e. _V -> ( A e. { B , C , D } <-> ( A = B \/ A = C \/ A = D ) ) )
3 1 2 ax-mp
 |-  ( A e. { B , C , D } <-> ( A = B \/ A = C \/ A = D ) )