Metamath Proof Explorer


Theorem elun2

Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993)

Ref Expression
Assertion elun2
|- ( A e. B -> A e. ( C u. B ) )

Proof

Step Hyp Ref Expression
1 ssun2
 |-  B C_ ( C u. B )
2 1 sseli
 |-  ( A e. B -> A e. ( C u. B ) )