Description: A statement is true for every element of the union of a pair of classes if and only if it is true for every element of the first class and for every element of the second class. (Contributed by BTernaryTau, 27-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elunant | |- ( ( C e. ( A u. B ) -> ph ) <-> ( ( C e. A -> ph ) /\ ( C e. B -> ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun | |- ( C e. ( A u. B ) <-> ( C e. A \/ C e. B ) ) |
|
| 2 | 1 | imbi1i | |- ( ( C e. ( A u. B ) -> ph ) <-> ( ( C e. A \/ C e. B ) -> ph ) ) |
| 3 | jaob | |- ( ( ( C e. A \/ C e. B ) -> ph ) <-> ( ( C e. A -> ph ) /\ ( C e. B -> ph ) ) ) |
|
| 4 | 2 3 | bitri | |- ( ( C e. ( A u. B ) -> ph ) <-> ( ( C e. A -> ph ) /\ ( C e. B -> ph ) ) ) |