Description: Membership in class union. Restricted quantifier version. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eluni2f.1 | |- F/_ x A |
|
eluni2f.2 | |- F/_ x B |
||
Assertion | eluni2f | |- ( A e. U. B <-> E. x e. B A e. x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2f.1 | |- F/_ x A |
|
2 | eluni2f.2 | |- F/_ x B |
|
3 | exancom | |- ( E. x ( A e. x /\ x e. B ) <-> E. x ( x e. B /\ A e. x ) ) |
|
4 | 1 2 | elunif | |- ( A e. U. B <-> E. x ( A e. x /\ x e. B ) ) |
5 | df-rex | |- ( E. x e. B A e. x <-> E. x ( x e. B /\ A e. x ) ) |
|
6 | 3 4 5 | 3bitr4i | |- ( A e. U. B <-> E. x e. B A e. x ) |