Metamath Proof Explorer


Theorem eluni2f

Description: Membership in class union. Restricted quantifier version. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses eluni2f.1
|- F/_ x A
eluni2f.2
|- F/_ x B
Assertion eluni2f
|- ( A e. U. B <-> E. x e. B A e. x )

Proof

Step Hyp Ref Expression
1 eluni2f.1
 |-  F/_ x A
2 eluni2f.2
 |-  F/_ x B
3 exancom
 |-  ( E. x ( A e. x /\ x e. B ) <-> E. x ( x e. B /\ A e. x ) )
4 1 2 elunif
 |-  ( A e. U. B <-> E. x ( A e. x /\ x e. B ) )
5 df-rex
 |-  ( E. x e. B A e. x <-> E. x ( x e. B /\ A e. x ) )
6 3 4 5 3bitr4i
 |-  ( A e. U. B <-> E. x e. B A e. x )