Metamath Proof Explorer


Theorem elunii

Description: Membership in class union. (Contributed by NM, 24-Mar-1995)

Ref Expression
Assertion elunii
|- ( ( A e. B /\ B e. C ) -> A e. U. C )

Proof

Step Hyp Ref Expression
1 eleq2
 |-  ( x = B -> ( A e. x <-> A e. B ) )
2 eleq1
 |-  ( x = B -> ( x e. C <-> B e. C ) )
3 1 2 anbi12d
 |-  ( x = B -> ( ( A e. x /\ x e. C ) <-> ( A e. B /\ B e. C ) ) )
4 3 spcegv
 |-  ( B e. C -> ( ( A e. B /\ B e. C ) -> E. x ( A e. x /\ x e. C ) ) )
5 4 anabsi7
 |-  ( ( A e. B /\ B e. C ) -> E. x ( A e. x /\ x e. C ) )
6 eluni
 |-  ( A e. U. C <-> E. x ( A e. x /\ x e. C ) )
7 5 6 sylibr
 |-  ( ( A e. B /\ B e. C ) -> A e. U. C )