Step |
Hyp |
Ref |
Expression |
1 |
|
elfvdm |
|- ( B e. ( F ` A ) -> A e. dom F ) |
2 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
3 |
2
|
eleq2d |
|- ( x = A -> ( B e. ( F ` x ) <-> B e. ( F ` A ) ) ) |
4 |
3
|
rspcev |
|- ( ( A e. dom F /\ B e. ( F ` A ) ) -> E. x e. dom F B e. ( F ` x ) ) |
5 |
1 4
|
mpancom |
|- ( B e. ( F ` A ) -> E. x e. dom F B e. ( F ` x ) ) |
6 |
5
|
adantl |
|- ( ( Fun F /\ B e. ( F ` A ) ) -> E. x e. dom F B e. ( F ` x ) ) |
7 |
|
elunirn |
|- ( Fun F -> ( B e. U. ran F <-> E. x e. dom F B e. ( F ` x ) ) ) |
8 |
7
|
adantr |
|- ( ( Fun F /\ B e. ( F ` A ) ) -> ( B e. U. ran F <-> E. x e. dom F B e. ( F ` x ) ) ) |
9 |
6 8
|
mpbird |
|- ( ( Fun F /\ B e. ( F ` A ) ) -> B e. U. ran F ) |