Metamath Proof Explorer


Theorem elunirnALT

Description: Alternate proof of elunirn . It is shorter but requires ax-pow (through eluniima , funiunfv , ndmfv ). (Contributed by NM, 24-Sep-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion elunirnALT
|- ( Fun F -> ( A e. U. ran F <-> E. x e. dom F A e. ( F ` x ) ) )

Proof

Step Hyp Ref Expression
1 imadmrn
 |-  ( F " dom F ) = ran F
2 1 unieqi
 |-  U. ( F " dom F ) = U. ran F
3 2 eleq2i
 |-  ( A e. U. ( F " dom F ) <-> A e. U. ran F )
4 eluniima
 |-  ( Fun F -> ( A e. U. ( F " dom F ) <-> E. x e. dom F A e. ( F ` x ) ) )
5 3 4 bitr3id
 |-  ( Fun F -> ( A e. U. ran F <-> E. x e. dom F A e. ( F ` x ) ) )