Description: Alternate proof of elunirn . It is shorter but requires ax-pow (through eluniima , funiunfv , ndmfv ). (Contributed by NM, 24-Sep-2006) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | elunirnALT | |- ( Fun F -> ( A e. U. ran F <-> E. x e. dom F A e. ( F ` x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmrn | |- ( F " dom F ) = ran F |
|
2 | 1 | unieqi | |- U. ( F " dom F ) = U. ran F |
3 | 2 | eleq2i | |- ( A e. U. ( F " dom F ) <-> A e. U. ran F ) |
4 | eluniima | |- ( Fun F -> ( A e. U. ( F " dom F ) <-> E. x e. dom F A e. ( F ` x ) ) ) |
|
5 | 3 4 | bitr3id | |- ( Fun F -> ( A e. U. ran F <-> E. x e. dom F A e. ( F ` x ) ) ) |