Metamath Proof Explorer


Theorem eluz1i

Description: Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005)

Ref Expression
Hypothesis eluz.1
|- M e. ZZ
Assertion eluz1i
|- ( N e. ( ZZ>= ` M ) <-> ( N e. ZZ /\ M <_ N ) )

Proof

Step Hyp Ref Expression
1 eluz.1
 |-  M e. ZZ
2 eluz1
 |-  ( M e. ZZ -> ( N e. ( ZZ>= ` M ) <-> ( N e. ZZ /\ M <_ N ) ) )
3 1 2 ax-mp
 |-  ( N e. ( ZZ>= ` M ) <-> ( N e. ZZ /\ M <_ N ) )