| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 2 |
|
simp1 |
|- ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> M e. ZZ ) |
| 3 |
|
eluz1 |
|- ( M e. ZZ -> ( N e. ( ZZ>= ` M ) <-> ( N e. ZZ /\ M <_ N ) ) ) |
| 4 |
|
ibar |
|- ( M e. ZZ -> ( ( N e. ZZ /\ M <_ N ) <-> ( M e. ZZ /\ ( N e. ZZ /\ M <_ N ) ) ) ) |
| 5 |
3 4
|
bitrd |
|- ( M e. ZZ -> ( N e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ ( N e. ZZ /\ M <_ N ) ) ) ) |
| 6 |
|
3anass |
|- ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) <-> ( M e. ZZ /\ ( N e. ZZ /\ M <_ N ) ) ) |
| 7 |
5 6
|
bitr4di |
|- ( M e. ZZ -> ( N e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ N e. ZZ /\ M <_ N ) ) ) |
| 8 |
1 2 7
|
pm5.21nii |
|- ( N e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ N e. ZZ /\ M <_ N ) ) |