Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2b1 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. ZZ /\ 1 < N ) ) |
2 |
|
1re |
|- 1 e. RR |
3 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
4 |
|
ltle |
|- ( ( 1 e. RR /\ N e. RR ) -> ( 1 < N -> 1 <_ N ) ) |
5 |
2 3 4
|
sylancr |
|- ( N e. ZZ -> ( 1 < N -> 1 <_ N ) ) |
6 |
5
|
imdistani |
|- ( ( N e. ZZ /\ 1 < N ) -> ( N e. ZZ /\ 1 <_ N ) ) |
7 |
|
elnnz1 |
|- ( N e. NN <-> ( N e. ZZ /\ 1 <_ N ) ) |
8 |
6 7
|
sylibr |
|- ( ( N e. ZZ /\ 1 < N ) -> N e. NN ) |
9 |
|
simpr |
|- ( ( N e. ZZ /\ 1 < N ) -> 1 < N ) |
10 |
8 9
|
jca |
|- ( ( N e. ZZ /\ 1 < N ) -> ( N e. NN /\ 1 < N ) ) |
11 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
12 |
11
|
anim1i |
|- ( ( N e. NN /\ 1 < N ) -> ( N e. ZZ /\ 1 < N ) ) |
13 |
10 12
|
impbii |
|- ( ( N e. ZZ /\ 1 < N ) <-> ( N e. NN /\ 1 < N ) ) |
14 |
1 13
|
bitri |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ 1 < N ) ) |