Metamath Proof Explorer


Theorem eluz5nn

Description: An integer greater than or equal to 5 is a positive integer. (Contributed by AV, 22-Nov-2025)

Ref Expression
Assertion eluz5nn
|- ( N e. ( ZZ>= ` 5 ) -> N e. NN )

Proof

Step Hyp Ref Expression
1 uzuzle35
 |-  ( N e. ( ZZ>= ` 5 ) -> N e. ( ZZ>= ` 3 ) )
2 eluz3nn
 |-  ( N e. ( ZZ>= ` 3 ) -> N e. NN )
3 1 2 syl
 |-  ( N e. ( ZZ>= ` 5 ) -> N e. NN )