Metamath Proof Explorer
Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021)
|
|
Ref |
Expression |
|
Hypotheses |
eluzelz2d.1 |
|- Z = ( ZZ>= ` M ) |
|
|
eluzelz2d.2 |
|- ( ph -> N e. Z ) |
|
Assertion |
eluzelz2d |
|- ( ph -> N e. ZZ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelz2d.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
eluzelz2d.2 |
|- ( ph -> N e. Z ) |
3 |
1
|
eluzelz2 |
|- ( N e. Z -> N e. ZZ ) |
4 |
2 3
|
syl |
|- ( ph -> N e. ZZ ) |