Metamath Proof Explorer


Theorem eluzelz2d

Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses eluzelz2d.1
|- Z = ( ZZ>= ` M )
eluzelz2d.2
|- ( ph -> N e. Z )
Assertion eluzelz2d
|- ( ph -> N e. ZZ )

Proof

Step Hyp Ref Expression
1 eluzelz2d.1
 |-  Z = ( ZZ>= ` M )
2 eluzelz2d.2
 |-  ( ph -> N e. Z )
3 1 eluzelz2
 |-  ( N e. Z -> N e. ZZ )
4 2 3 syl
 |-  ( ph -> N e. ZZ )