Metamath Proof Explorer


Theorem eluzfz1

Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 21-Jul-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion eluzfz1
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) )

Proof

Step Hyp Ref Expression
1 eluzel2
 |-  ( N e. ( ZZ>= ` M ) -> M e. ZZ )
2 uzid
 |-  ( M e. ZZ -> M e. ( ZZ>= ` M ) )
3 1 2 syl
 |-  ( N e. ( ZZ>= ` M ) -> M e. ( ZZ>= ` M ) )
4 eluzfz
 |-  ( ( M e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` M ) ) -> M e. ( M ... N ) )
5 3 4 mpancom
 |-  ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) )