Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( N e. ( ZZ>= ` A ) /\ B < A ) -> N e. ( ZZ>= ` A ) ) |
2 |
1
|
adantl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> N e. ( ZZ>= ` A ) ) |
3 |
|
simpl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> A e. ZZ ) |
4 |
3
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> A e. ZZ ) |
5 |
|
eluzelz |
|- ( N e. ( ZZ>= ` A ) -> N e. ZZ ) |
6 |
5
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` A ) /\ B < A ) /\ ( A e. ZZ /\ B e. ZZ ) ) -> N e. ZZ ) |
7 |
|
simprr |
|- ( ( ( N e. ( ZZ>= ` A ) /\ B < A ) /\ ( A e. ZZ /\ B e. ZZ ) ) -> B e. ZZ ) |
8 |
6 7
|
zsubcld |
|- ( ( ( N e. ( ZZ>= ` A ) /\ B < A ) /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( N - B ) e. ZZ ) |
9 |
8
|
ancoms |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> ( N - B ) e. ZZ ) |
10 |
4 9
|
zaddcld |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> ( A + ( N - B ) ) e. ZZ ) |
11 |
|
zre |
|- ( B e. ZZ -> B e. RR ) |
12 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
13 |
|
posdif |
|- ( ( B e. RR /\ A e. RR ) -> ( B < A <-> 0 < ( A - B ) ) ) |
14 |
13
|
biimpd |
|- ( ( B e. RR /\ A e. RR ) -> ( B < A -> 0 < ( A - B ) ) ) |
15 |
11 12 14
|
syl2anr |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( B < A -> 0 < ( A - B ) ) ) |
16 |
15
|
adantld |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( N e. ( ZZ>= ` A ) /\ B < A ) -> 0 < ( A - B ) ) ) |
17 |
16
|
imp |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> 0 < ( A - B ) ) |
18 |
|
resubcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR ) |
19 |
12 11 18
|
syl2an |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. RR ) |
20 |
19
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> ( A - B ) e. RR ) |
21 |
|
eluzelre |
|- ( N e. ( ZZ>= ` A ) -> N e. RR ) |
22 |
21
|
ad2antrl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> N e. RR ) |
23 |
20 22
|
ltaddposd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> ( 0 < ( A - B ) <-> N < ( N + ( A - B ) ) ) ) |
24 |
17 23
|
mpbid |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> N < ( N + ( A - B ) ) ) |
25 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
26 |
25
|
ad2antrr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> A e. CC ) |
27 |
|
eluzelcn |
|- ( N e. ( ZZ>= ` A ) -> N e. CC ) |
28 |
27
|
ad2antrl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> N e. CC ) |
29 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
30 |
29
|
adantl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> B e. CC ) |
31 |
30
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> B e. CC ) |
32 |
|
addsub12 |
|- ( ( A e. CC /\ N e. CC /\ B e. CC ) -> ( A + ( N - B ) ) = ( N + ( A - B ) ) ) |
33 |
32
|
breq2d |
|- ( ( A e. CC /\ N e. CC /\ B e. CC ) -> ( N < ( A + ( N - B ) ) <-> N < ( N + ( A - B ) ) ) ) |
34 |
26 28 31 33
|
syl3anc |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> ( N < ( A + ( N - B ) ) <-> N < ( N + ( A - B ) ) ) ) |
35 |
24 34
|
mpbird |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> N < ( A + ( N - B ) ) ) |
36 |
|
elfzo2 |
|- ( N e. ( A ..^ ( A + ( N - B ) ) ) <-> ( N e. ( ZZ>= ` A ) /\ ( A + ( N - B ) ) e. ZZ /\ N < ( A + ( N - B ) ) ) ) |
37 |
2 10 35 36
|
syl3anbrc |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> N e. ( A ..^ ( A + ( N - B ) ) ) ) |
38 |
|
fzosubel3 |
|- ( ( N e. ( A ..^ ( A + ( N - B ) ) ) /\ ( N - B ) e. ZZ ) -> ( N - A ) e. ( 0 ..^ ( N - B ) ) ) |
39 |
37 9 38
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> ( N - A ) e. ( 0 ..^ ( N - B ) ) ) |
40 |
39
|
ex |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( N e. ( ZZ>= ` A ) /\ B < A ) -> ( N - A ) e. ( 0 ..^ ( N - B ) ) ) ) |