Description: Membership in a nonnegative upper set of integers implies membership in NN0 . (Contributed by Paul Chapman, 22-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | eluznn0 | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) ) -> M e. NN0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
2 | 1 | uztrn2 | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) ) -> M e. NN0 ) |