Metamath Proof Explorer


Theorem eluzp1l

Description: Strict ordering implied by membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005)

Ref Expression
Assertion eluzp1l
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> M < N )

Proof

Step Hyp Ref Expression
1 eluzle
 |-  ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( M + 1 ) <_ N )
2 1 adantl
 |-  ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M + 1 ) <_ N )
3 eluzelz
 |-  ( N e. ( ZZ>= ` ( M + 1 ) ) -> N e. ZZ )
4 zltp1le
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( M + 1 ) <_ N ) )
5 3 4 sylan2
 |-  ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M < N <-> ( M + 1 ) <_ N ) )
6 2 5 mpbird
 |-  ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> M < N )