| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|- ( A e. InaccW -> A e. _V ) |
| 2 |
|
fvex |
|- ( cf ` A ) e. _V |
| 3 |
|
eleq1 |
|- ( ( cf ` A ) = A -> ( ( cf ` A ) e. _V <-> A e. _V ) ) |
| 4 |
2 3
|
mpbii |
|- ( ( cf ` A ) = A -> A e. _V ) |
| 5 |
4
|
3ad2ant2 |
|- ( ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A E. y e. A x ~< y ) -> A e. _V ) |
| 6 |
|
neeq1 |
|- ( z = A -> ( z =/= (/) <-> A =/= (/) ) ) |
| 7 |
|
fveq2 |
|- ( z = A -> ( cf ` z ) = ( cf ` A ) ) |
| 8 |
|
eqeq12 |
|- ( ( ( cf ` z ) = ( cf ` A ) /\ z = A ) -> ( ( cf ` z ) = z <-> ( cf ` A ) = A ) ) |
| 9 |
7 8
|
mpancom |
|- ( z = A -> ( ( cf ` z ) = z <-> ( cf ` A ) = A ) ) |
| 10 |
|
rexeq |
|- ( z = A -> ( E. y e. z x ~< y <-> E. y e. A x ~< y ) ) |
| 11 |
10
|
raleqbi1dv |
|- ( z = A -> ( A. x e. z E. y e. z x ~< y <-> A. x e. A E. y e. A x ~< y ) ) |
| 12 |
6 9 11
|
3anbi123d |
|- ( z = A -> ( ( z =/= (/) /\ ( cf ` z ) = z /\ A. x e. z E. y e. z x ~< y ) <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A E. y e. A x ~< y ) ) ) |
| 13 |
|
df-wina |
|- InaccW = { z | ( z =/= (/) /\ ( cf ` z ) = z /\ A. x e. z E. y e. z x ~< y ) } |
| 14 |
12 13
|
elab2g |
|- ( A e. _V -> ( A e. InaccW <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A E. y e. A x ~< y ) ) ) |
| 15 |
1 5 14
|
pm5.21nii |
|- ( A e. InaccW <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A E. y e. A x ~< y ) ) |