| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elwwlks2.v |
|- V = ( Vtx ` G ) |
| 2 |
1
|
wwlksnwwlksnon |
|- ( W e. ( 2 WWalksN G ) <-> E. a e. V E. c e. V W e. ( a ( 2 WWalksNOn G ) c ) ) |
| 3 |
2
|
a1i |
|- ( G e. UPGraph -> ( W e. ( 2 WWalksN G ) <-> E. a e. V E. c e. V W e. ( a ( 2 WWalksNOn G ) c ) ) ) |
| 4 |
1
|
elwwlks2on |
|- ( ( G e. UPGraph /\ a e. V /\ c e. V ) -> ( W e. ( a ( 2 WWalksNOn G ) c ) <-> E. b e. V ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) ) |
| 5 |
4
|
3expb |
|- ( ( G e. UPGraph /\ ( a e. V /\ c e. V ) ) -> ( W e. ( a ( 2 WWalksNOn G ) c ) <-> E. b e. V ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) ) |
| 6 |
5
|
2rexbidva |
|- ( G e. UPGraph -> ( E. a e. V E. c e. V W e. ( a ( 2 WWalksNOn G ) c ) <-> E. a e. V E. c e. V E. b e. V ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) ) |
| 7 |
|
rexcom |
|- ( E. c e. V E. b e. V ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) <-> E. b e. V E. c e. V ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) |
| 8 |
|
s3cli |
|- <" a b c "> e. Word _V |
| 9 |
8
|
a1i |
|- ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> <" a b c "> e. Word _V ) |
| 10 |
|
simplr |
|- ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> W = <" a b c "> ) |
| 11 |
|
simpr |
|- ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> p = <" a b c "> ) |
| 12 |
10 11
|
eqtr4d |
|- ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> W = p ) |
| 13 |
12
|
breq2d |
|- ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> ( f ( Walks ` G ) W <-> f ( Walks ` G ) p ) ) |
| 14 |
13
|
biimpd |
|- ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> ( f ( Walks ` G ) W -> f ( Walks ` G ) p ) ) |
| 15 |
14
|
com12 |
|- ( f ( Walks ` G ) W -> ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> f ( Walks ` G ) p ) ) |
| 16 |
15
|
adantr |
|- ( ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) -> ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> f ( Walks ` G ) p ) ) |
| 17 |
16
|
impcom |
|- ( ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) /\ ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> f ( Walks ` G ) p ) |
| 18 |
|
simprr |
|- ( ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) /\ ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> ( # ` f ) = 2 ) |
| 19 |
|
vex |
|- a e. _V |
| 20 |
|
s3fv0 |
|- ( a e. _V -> ( <" a b c "> ` 0 ) = a ) |
| 21 |
20
|
eqcomd |
|- ( a e. _V -> a = ( <" a b c "> ` 0 ) ) |
| 22 |
19 21
|
mp1i |
|- ( p = <" a b c "> -> a = ( <" a b c "> ` 0 ) ) |
| 23 |
|
fveq1 |
|- ( p = <" a b c "> -> ( p ` 0 ) = ( <" a b c "> ` 0 ) ) |
| 24 |
22 23
|
eqtr4d |
|- ( p = <" a b c "> -> a = ( p ` 0 ) ) |
| 25 |
|
vex |
|- b e. _V |
| 26 |
|
s3fv1 |
|- ( b e. _V -> ( <" a b c "> ` 1 ) = b ) |
| 27 |
26
|
eqcomd |
|- ( b e. _V -> b = ( <" a b c "> ` 1 ) ) |
| 28 |
25 27
|
mp1i |
|- ( p = <" a b c "> -> b = ( <" a b c "> ` 1 ) ) |
| 29 |
|
fveq1 |
|- ( p = <" a b c "> -> ( p ` 1 ) = ( <" a b c "> ` 1 ) ) |
| 30 |
28 29
|
eqtr4d |
|- ( p = <" a b c "> -> b = ( p ` 1 ) ) |
| 31 |
|
vex |
|- c e. _V |
| 32 |
|
s3fv2 |
|- ( c e. _V -> ( <" a b c "> ` 2 ) = c ) |
| 33 |
32
|
eqcomd |
|- ( c e. _V -> c = ( <" a b c "> ` 2 ) ) |
| 34 |
31 33
|
mp1i |
|- ( p = <" a b c "> -> c = ( <" a b c "> ` 2 ) ) |
| 35 |
|
fveq1 |
|- ( p = <" a b c "> -> ( p ` 2 ) = ( <" a b c "> ` 2 ) ) |
| 36 |
34 35
|
eqtr4d |
|- ( p = <" a b c "> -> c = ( p ` 2 ) ) |
| 37 |
24 30 36
|
3jca |
|- ( p = <" a b c "> -> ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) |
| 38 |
37
|
adantl |
|- ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) |
| 39 |
38
|
adantr |
|- ( ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) /\ ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) |
| 40 |
17 18 39
|
3jca |
|- ( ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) /\ ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) |
| 41 |
40
|
ex |
|- ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> ( ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) -> ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) |
| 42 |
9 41
|
spcimedv |
|- ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) -> E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) |
| 43 |
|
wlklenvp1 |
|- ( f ( Walks ` G ) p -> ( # ` p ) = ( ( # ` f ) + 1 ) ) |
| 44 |
|
simpl |
|- ( ( ( # ` p ) = ( ( # ` f ) + 1 ) /\ ( # ` f ) = 2 ) -> ( # ` p ) = ( ( # ` f ) + 1 ) ) |
| 45 |
|
oveq1 |
|- ( ( # ` f ) = 2 -> ( ( # ` f ) + 1 ) = ( 2 + 1 ) ) |
| 46 |
45
|
adantl |
|- ( ( ( # ` p ) = ( ( # ` f ) + 1 ) /\ ( # ` f ) = 2 ) -> ( ( # ` f ) + 1 ) = ( 2 + 1 ) ) |
| 47 |
44 46
|
eqtrd |
|- ( ( ( # ` p ) = ( ( # ` f ) + 1 ) /\ ( # ` f ) = 2 ) -> ( # ` p ) = ( 2 + 1 ) ) |
| 48 |
47
|
adantl |
|- ( ( f ( Walks ` G ) p /\ ( ( # ` p ) = ( ( # ` f ) + 1 ) /\ ( # ` f ) = 2 ) ) -> ( # ` p ) = ( 2 + 1 ) ) |
| 49 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 50 |
48 49
|
eqtrdi |
|- ( ( f ( Walks ` G ) p /\ ( ( # ` p ) = ( ( # ` f ) + 1 ) /\ ( # ` f ) = 2 ) ) -> ( # ` p ) = 3 ) |
| 51 |
50
|
exp32 |
|- ( f ( Walks ` G ) p -> ( ( # ` p ) = ( ( # ` f ) + 1 ) -> ( ( # ` f ) = 2 -> ( # ` p ) = 3 ) ) ) |
| 52 |
43 51
|
mpd |
|- ( f ( Walks ` G ) p -> ( ( # ` f ) = 2 -> ( # ` p ) = 3 ) ) |
| 53 |
52
|
adantr |
|- ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) -> ( ( # ` f ) = 2 -> ( # ` p ) = 3 ) ) |
| 54 |
53
|
imp |
|- ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) -> ( # ` p ) = 3 ) |
| 55 |
|
eqcom |
|- ( a = ( p ` 0 ) <-> ( p ` 0 ) = a ) |
| 56 |
55
|
biimpi |
|- ( a = ( p ` 0 ) -> ( p ` 0 ) = a ) |
| 57 |
|
eqcom |
|- ( b = ( p ` 1 ) <-> ( p ` 1 ) = b ) |
| 58 |
57
|
biimpi |
|- ( b = ( p ` 1 ) -> ( p ` 1 ) = b ) |
| 59 |
|
eqcom |
|- ( c = ( p ` 2 ) <-> ( p ` 2 ) = c ) |
| 60 |
59
|
biimpi |
|- ( c = ( p ` 2 ) -> ( p ` 2 ) = c ) |
| 61 |
56 58 60
|
3anim123i |
|- ( ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) -> ( ( p ` 0 ) = a /\ ( p ` 1 ) = b /\ ( p ` 2 ) = c ) ) |
| 62 |
54 61
|
anim12i |
|- ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( ( # ` p ) = 3 /\ ( ( p ` 0 ) = a /\ ( p ` 1 ) = b /\ ( p ` 2 ) = c ) ) ) |
| 63 |
1
|
wlkpwrd |
|- ( f ( Walks ` G ) p -> p e. Word V ) |
| 64 |
|
simpr |
|- ( ( G e. UPGraph /\ a e. V ) -> a e. V ) |
| 65 |
64
|
anim1i |
|- ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( a e. V /\ ( b e. V /\ c e. V ) ) ) |
| 66 |
|
3anass |
|- ( ( a e. V /\ b e. V /\ c e. V ) <-> ( a e. V /\ ( b e. V /\ c e. V ) ) ) |
| 67 |
65 66
|
sylibr |
|- ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( a e. V /\ b e. V /\ c e. V ) ) |
| 68 |
67
|
adantr |
|- ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( a e. V /\ b e. V /\ c e. V ) ) |
| 69 |
63 68
|
anim12i |
|- ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) -> ( p e. Word V /\ ( a e. V /\ b e. V /\ c e. V ) ) ) |
| 70 |
69
|
ad2antrr |
|- ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( p e. Word V /\ ( a e. V /\ b e. V /\ c e. V ) ) ) |
| 71 |
|
eqwrds3 |
|- ( ( p e. Word V /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( p = <" a b c "> <-> ( ( # ` p ) = 3 /\ ( ( p ` 0 ) = a /\ ( p ` 1 ) = b /\ ( p ` 2 ) = c ) ) ) ) |
| 72 |
70 71
|
syl |
|- ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( p = <" a b c "> <-> ( ( # ` p ) = 3 /\ ( ( p ` 0 ) = a /\ ( p ` 1 ) = b /\ ( p ` 2 ) = c ) ) ) ) |
| 73 |
62 72
|
mpbird |
|- ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> p = <" a b c "> ) |
| 74 |
|
simprr |
|- ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) -> W = <" a b c "> ) |
| 75 |
74
|
ad2antrr |
|- ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> W = <" a b c "> ) |
| 76 |
73 75
|
eqtr4d |
|- ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> p = W ) |
| 77 |
76
|
breq2d |
|- ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) p <-> f ( Walks ` G ) W ) ) |
| 78 |
77
|
biimpd |
|- ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) p -> f ( Walks ` G ) W ) ) |
| 79 |
|
simplr |
|- ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( # ` f ) = 2 ) |
| 80 |
78 79
|
jctird |
|- ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) p -> ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) |
| 81 |
80
|
exp41 |
|- ( f ( Walks ` G ) p -> ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( ( # ` f ) = 2 -> ( ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) -> ( f ( Walks ` G ) p -> ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) ) ) ) |
| 82 |
81
|
com25 |
|- ( f ( Walks ` G ) p -> ( f ( Walks ` G ) p -> ( ( # ` f ) = 2 -> ( ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) -> ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) ) ) ) |
| 83 |
82
|
pm2.43i |
|- ( f ( Walks ` G ) p -> ( ( # ` f ) = 2 -> ( ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) -> ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) ) ) |
| 84 |
83
|
3imp |
|- ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) |
| 85 |
84
|
com12 |
|- ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) |
| 86 |
85
|
exlimdv |
|- ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) |
| 87 |
42 86
|
impbid |
|- ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) <-> E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) |
| 88 |
87
|
exbidv |
|- ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) <-> E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) |
| 89 |
88
|
pm5.32da |
|- ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) <-> ( W = <" a b c "> /\ E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) ) |
| 90 |
89
|
2rexbidva |
|- ( ( G e. UPGraph /\ a e. V ) -> ( E. b e. V E. c e. V ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) <-> E. b e. V E. c e. V ( W = <" a b c "> /\ E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) ) |
| 91 |
7 90
|
bitrid |
|- ( ( G e. UPGraph /\ a e. V ) -> ( E. c e. V E. b e. V ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) <-> E. b e. V E. c e. V ( W = <" a b c "> /\ E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) ) |
| 92 |
91
|
rexbidva |
|- ( G e. UPGraph -> ( E. a e. V E. c e. V E. b e. V ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) <-> E. a e. V E. b e. V E. c e. V ( W = <" a b c "> /\ E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) ) |
| 93 |
3 6 92
|
3bitrd |
|- ( G e. UPGraph -> ( W e. ( 2 WWalksN G ) <-> E. a e. V E. b e. V E. c e. V ( W = <" a b c "> /\ E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) ) |