| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlks2onv.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | id |  |-  ( W e. ( A ( 2 WWalksNOn G ) C ) -> W e. ( A ( 2 WWalksNOn G ) C ) ) | 
						
							| 3 | 1 | elwwlks2ons3im |  |-  ( W e. ( A ( 2 WWalksNOn G ) C ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) | 
						
							| 4 |  | anass |  |-  ( ( ( W e. ( A ( 2 WWalksNOn G ) C ) /\ W = <" A ( W ` 1 ) C "> ) /\ ( W ` 1 ) e. V ) <-> ( W e. ( A ( 2 WWalksNOn G ) C ) /\ ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) ) | 
						
							| 5 | 2 3 4 | sylanbrc |  |-  ( W e. ( A ( 2 WWalksNOn G ) C ) -> ( ( W e. ( A ( 2 WWalksNOn G ) C ) /\ W = <" A ( W ` 1 ) C "> ) /\ ( W ` 1 ) e. V ) ) | 
						
							| 6 |  | simpr |  |-  ( ( ( W e. ( A ( 2 WWalksNOn G ) C ) /\ W = <" A ( W ` 1 ) C "> ) /\ ( W ` 1 ) e. V ) -> ( W ` 1 ) e. V ) | 
						
							| 7 |  | s3eq2 |  |-  ( b = ( W ` 1 ) -> <" A b C "> = <" A ( W ` 1 ) C "> ) | 
						
							| 8 |  | eqeq2 |  |-  ( <" A b C "> = <" A ( W ` 1 ) C "> -> ( W = <" A b C "> <-> W = <" A ( W ` 1 ) C "> ) ) | 
						
							| 9 |  | eleq1 |  |-  ( <" A b C "> = <" A ( W ` 1 ) C "> -> ( <" A b C "> e. ( A ( 2 WWalksNOn G ) C ) <-> <" A ( W ` 1 ) C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) | 
						
							| 10 | 8 9 | anbi12d |  |-  ( <" A b C "> = <" A ( W ` 1 ) C "> -> ( ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WWalksNOn G ) C ) ) <-> ( W = <" A ( W ` 1 ) C "> /\ <" A ( W ` 1 ) C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) ) | 
						
							| 11 | 7 10 | syl |  |-  ( b = ( W ` 1 ) -> ( ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WWalksNOn G ) C ) ) <-> ( W = <" A ( W ` 1 ) C "> /\ <" A ( W ` 1 ) C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ( ( W e. ( A ( 2 WWalksNOn G ) C ) /\ W = <" A ( W ` 1 ) C "> ) /\ ( W ` 1 ) e. V ) /\ b = ( W ` 1 ) ) -> ( ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WWalksNOn G ) C ) ) <-> ( W = <" A ( W ` 1 ) C "> /\ <" A ( W ` 1 ) C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) ) | 
						
							| 13 |  | simpr |  |-  ( ( W e. ( A ( 2 WWalksNOn G ) C ) /\ W = <" A ( W ` 1 ) C "> ) -> W = <" A ( W ` 1 ) C "> ) | 
						
							| 14 |  | eleq1 |  |-  ( W = <" A ( W ` 1 ) C "> -> ( W e. ( A ( 2 WWalksNOn G ) C ) <-> <" A ( W ` 1 ) C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) | 
						
							| 15 | 14 | biimpac |  |-  ( ( W e. ( A ( 2 WWalksNOn G ) C ) /\ W = <" A ( W ` 1 ) C "> ) -> <" A ( W ` 1 ) C "> e. ( A ( 2 WWalksNOn G ) C ) ) | 
						
							| 16 | 13 15 | jca |  |-  ( ( W e. ( A ( 2 WWalksNOn G ) C ) /\ W = <" A ( W ` 1 ) C "> ) -> ( W = <" A ( W ` 1 ) C "> /\ <" A ( W ` 1 ) C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( W e. ( A ( 2 WWalksNOn G ) C ) /\ W = <" A ( W ` 1 ) C "> ) /\ ( W ` 1 ) e. V ) -> ( W = <" A ( W ` 1 ) C "> /\ <" A ( W ` 1 ) C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) | 
						
							| 18 | 6 12 17 | rspcedvd |  |-  ( ( ( W e. ( A ( 2 WWalksNOn G ) C ) /\ W = <" A ( W ` 1 ) C "> ) /\ ( W ` 1 ) e. V ) -> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) | 
						
							| 19 | 5 18 | syl |  |-  ( W e. ( A ( 2 WWalksNOn G ) C ) -> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) | 
						
							| 20 |  | eleq1 |  |-  ( <" A b C "> = W -> ( <" A b C "> e. ( A ( 2 WWalksNOn G ) C ) <-> W e. ( A ( 2 WWalksNOn G ) C ) ) ) | 
						
							| 21 | 20 | eqcoms |  |-  ( W = <" A b C "> -> ( <" A b C "> e. ( A ( 2 WWalksNOn G ) C ) <-> W e. ( A ( 2 WWalksNOn G ) C ) ) ) | 
						
							| 22 | 21 | biimpa |  |-  ( ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WWalksNOn G ) C ) ) -> W e. ( A ( 2 WWalksNOn G ) C ) ) | 
						
							| 23 | 22 | rexlimivw |  |-  ( E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WWalksNOn G ) C ) ) -> W e. ( A ( 2 WWalksNOn G ) C ) ) | 
						
							| 24 | 19 23 | impbii |  |-  ( W e. ( A ( 2 WWalksNOn G ) C ) <-> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) |