| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlks2onv.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 | 1 | wwlksonvtx |  |-  ( W e. ( A ( 2 WWalksNOn G ) C ) -> ( A e. V /\ C e. V ) ) | 
						
							| 3 |  | wwlknon |  |-  ( W e. ( A ( 2 WWalksNOn G ) C ) <-> ( W e. ( 2 WWalksN G ) /\ ( W ` 0 ) = A /\ ( W ` 2 ) = C ) ) | 
						
							| 4 |  | wwlknbp1 |  |-  ( W e. ( 2 WWalksN G ) -> ( 2 e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( 2 + 1 ) ) ) | 
						
							| 5 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 6 | 5 | eqeq2i |  |-  ( ( # ` W ) = ( 2 + 1 ) <-> ( # ` W ) = 3 ) | 
						
							| 7 |  | 1ex |  |-  1 e. _V | 
						
							| 8 | 7 | tpid2 |  |-  1 e. { 0 , 1 , 2 } | 
						
							| 9 |  | fzo0to3tp |  |-  ( 0 ..^ 3 ) = { 0 , 1 , 2 } | 
						
							| 10 | 8 9 | eleqtrri |  |-  1 e. ( 0 ..^ 3 ) | 
						
							| 11 |  | oveq2 |  |-  ( ( # ` W ) = 3 -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ 3 ) ) | 
						
							| 12 | 10 11 | eleqtrrid |  |-  ( ( # ` W ) = 3 -> 1 e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 13 |  | wrdsymbcl |  |-  ( ( W e. Word ( Vtx ` G ) /\ 1 e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` 1 ) e. ( Vtx ` G ) ) | 
						
							| 14 | 12 13 | sylan2 |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) -> ( W ` 1 ) e. ( Vtx ` G ) ) | 
						
							| 15 | 14 | 3ad2ant1 |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) -> ( W ` 1 ) e. ( Vtx ` G ) ) | 
						
							| 16 |  | simpl1r |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> ( # ` W ) = 3 ) | 
						
							| 17 |  | simpl |  |-  ( ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( W ` 0 ) = A ) | 
						
							| 18 |  | eqidd |  |-  ( ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( W ` 1 ) = ( W ` 1 ) ) | 
						
							| 19 |  | simpr |  |-  ( ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( W ` 2 ) = C ) | 
						
							| 20 | 17 18 19 | 3jca |  |-  ( ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( ( W ` 0 ) = A /\ ( W ` 1 ) = ( W ` 1 ) /\ ( W ` 2 ) = C ) ) | 
						
							| 21 | 20 | 3ad2ant2 |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) -> ( ( W ` 0 ) = A /\ ( W ` 1 ) = ( W ` 1 ) /\ ( W ` 2 ) = C ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> ( ( W ` 0 ) = A /\ ( W ` 1 ) = ( W ` 1 ) /\ ( W ` 2 ) = C ) ) | 
						
							| 23 | 1 | eqcomi |  |-  ( Vtx ` G ) = V | 
						
							| 24 | 23 | wrdeqi |  |-  Word ( Vtx ` G ) = Word V | 
						
							| 25 | 24 | eleq2i |  |-  ( W e. Word ( Vtx ` G ) <-> W e. Word V ) | 
						
							| 26 | 25 | biimpi |  |-  ( W e. Word ( Vtx ` G ) -> W e. Word V ) | 
						
							| 27 | 26 | adantr |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) -> W e. Word V ) | 
						
							| 28 | 27 | 3ad2ant1 |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) -> W e. Word V ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> W e. Word V ) | 
						
							| 30 |  | simpl3l |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> A e. V ) | 
						
							| 31 | 23 | eleq2i |  |-  ( ( W ` 1 ) e. ( Vtx ` G ) <-> ( W ` 1 ) e. V ) | 
						
							| 32 | 31 | biimpi |  |-  ( ( W ` 1 ) e. ( Vtx ` G ) -> ( W ` 1 ) e. V ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> ( W ` 1 ) e. V ) | 
						
							| 34 |  | simpl3r |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> C e. V ) | 
						
							| 35 |  | eqwrds3 |  |-  ( ( W e. Word V /\ ( A e. V /\ ( W ` 1 ) e. V /\ C e. V ) ) -> ( W = <" A ( W ` 1 ) C "> <-> ( ( # ` W ) = 3 /\ ( ( W ` 0 ) = A /\ ( W ` 1 ) = ( W ` 1 ) /\ ( W ` 2 ) = C ) ) ) ) | 
						
							| 36 | 29 30 33 34 35 | syl13anc |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> ( W = <" A ( W ` 1 ) C "> <-> ( ( # ` W ) = 3 /\ ( ( W ` 0 ) = A /\ ( W ` 1 ) = ( W ` 1 ) /\ ( W ` 2 ) = C ) ) ) ) | 
						
							| 37 | 16 22 36 | mpbir2and |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> W = <" A ( W ` 1 ) C "> ) | 
						
							| 38 | 37 33 | jca |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) | 
						
							| 39 | 15 38 | mpdan |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) | 
						
							| 40 | 39 | 3exp |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) -> ( ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( ( A e. V /\ C e. V ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) ) ) | 
						
							| 41 | 6 40 | sylan2b |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( 2 + 1 ) ) -> ( ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( ( A e. V /\ C e. V ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) ) ) | 
						
							| 42 | 41 | 3adant1 |  |-  ( ( 2 e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( 2 + 1 ) ) -> ( ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( ( A e. V /\ C e. V ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) ) ) | 
						
							| 43 | 4 42 | syl |  |-  ( W e. ( 2 WWalksN G ) -> ( ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( ( A e. V /\ C e. V ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) ) ) | 
						
							| 44 | 43 | 3impib |  |-  ( ( W e. ( 2 WWalksN G ) /\ ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( ( A e. V /\ C e. V ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) ) | 
						
							| 45 | 3 44 | sylbi |  |-  ( W e. ( A ( 2 WWalksNOn G ) C ) -> ( ( A e. V /\ C e. V ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) ) | 
						
							| 46 | 2 45 | mpd |  |-  ( W e. ( A ( 2 WWalksNOn G ) C ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) |