| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elwwlks2s3.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | wwlknbp1 |  |-  ( W e. ( 2 WWalksN G ) -> ( 2 e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( 2 + 1 ) ) ) | 
						
							| 3 | 1 | wrdeqi |  |-  Word V = Word ( Vtx ` G ) | 
						
							| 4 | 3 | eleq2i |  |-  ( W e. Word V <-> W e. Word ( Vtx ` G ) ) | 
						
							| 5 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 6 | 5 | eqeq2i |  |-  ( ( # ` W ) = 3 <-> ( # ` W ) = ( 2 + 1 ) ) | 
						
							| 7 | 4 6 | anbi12i |  |-  ( ( W e. Word V /\ ( # ` W ) = 3 ) <-> ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( 2 + 1 ) ) ) | 
						
							| 8 |  | wrdl3s3 |  |-  ( ( W e. Word V /\ ( # ` W ) = 3 ) <-> E. a e. V E. b e. V E. c e. V W = <" a b c "> ) | 
						
							| 9 | 7 8 | sylbb1 |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( 2 + 1 ) ) -> E. a e. V E. b e. V E. c e. V W = <" a b c "> ) | 
						
							| 10 | 9 | 3adant1 |  |-  ( ( 2 e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( 2 + 1 ) ) -> E. a e. V E. b e. V E. c e. V W = <" a b c "> ) | 
						
							| 11 | 2 10 | syl |  |-  ( W e. ( 2 WWalksN G ) -> E. a e. V E. b e. V E. c e. V W = <" a b c "> ) |