Description: Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elxp | |- ( A e. ( B X. C ) <-> E. x E. y ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp | |- ( B X. C ) = { <. x , y >. | ( x e. B /\ y e. C ) } |
|
| 2 | 1 | eleq2i | |- ( A e. ( B X. C ) <-> A e. { <. x , y >. | ( x e. B /\ y e. C ) } ) |
| 3 | elopab | |- ( A e. { <. x , y >. | ( x e. B /\ y e. C ) } <-> E. x E. y ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) ) |
|
| 4 | 2 3 | bitri | |- ( A e. ( B X. C ) <-> E. x E. y ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) ) |