| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxp4 |
|- ( A e. ( B X. C ) <-> ( A = <. U. dom { A } , U. ran { A } >. /\ ( U. dom { A } e. B /\ U. ran { A } e. C ) ) ) |
| 2 |
|
1stval |
|- ( 1st ` A ) = U. dom { A } |
| 3 |
|
2ndval |
|- ( 2nd ` A ) = U. ran { A } |
| 4 |
2 3
|
opeq12i |
|- <. ( 1st ` A ) , ( 2nd ` A ) >. = <. U. dom { A } , U. ran { A } >. |
| 5 |
4
|
eqeq2i |
|- ( A = <. ( 1st ` A ) , ( 2nd ` A ) >. <-> A = <. U. dom { A } , U. ran { A } >. ) |
| 6 |
2
|
eleq1i |
|- ( ( 1st ` A ) e. B <-> U. dom { A } e. B ) |
| 7 |
3
|
eleq1i |
|- ( ( 2nd ` A ) e. C <-> U. ran { A } e. C ) |
| 8 |
6 7
|
anbi12i |
|- ( ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) <-> ( U. dom { A } e. B /\ U. ran { A } e. C ) ) |
| 9 |
5 8
|
anbi12i |
|- ( ( A = <. ( 1st ` A ) , ( 2nd ` A ) >. /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) <-> ( A = <. U. dom { A } , U. ran { A } >. /\ ( U. dom { A } e. B /\ U. ran { A } e. C ) ) ) |
| 10 |
1 9
|
bitr4i |
|- ( A e. ( B X. C ) <-> ( A = <. ( 1st ` A ) , ( 2nd ` A ) >. /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) |