| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-xr |
|- RR* = ( RR u. { +oo , -oo } ) |
| 2 |
1
|
eleq2i |
|- ( A e. RR* <-> A e. ( RR u. { +oo , -oo } ) ) |
| 3 |
|
elun |
|- ( A e. ( RR u. { +oo , -oo } ) <-> ( A e. RR \/ A e. { +oo , -oo } ) ) |
| 4 |
|
pnfex |
|- +oo e. _V |
| 5 |
|
mnfxr |
|- -oo e. RR* |
| 6 |
5
|
elexi |
|- -oo e. _V |
| 7 |
4 6
|
elpr2 |
|- ( A e. { +oo , -oo } <-> ( A = +oo \/ A = -oo ) ) |
| 8 |
7
|
orbi2i |
|- ( ( A e. RR \/ A e. { +oo , -oo } ) <-> ( A e. RR \/ ( A = +oo \/ A = -oo ) ) ) |
| 9 |
|
3orass |
|- ( ( A e. RR \/ A = +oo \/ A = -oo ) <-> ( A e. RR \/ ( A = +oo \/ A = -oo ) ) ) |
| 10 |
8 9
|
bitr4i |
|- ( ( A e. RR \/ A e. { +oo , -oo } ) <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 11 |
2 3 10
|
3bitri |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |