Step |
Hyp |
Ref |
Expression |
1 |
|
df-xr |
|- RR* = ( RR u. { +oo , -oo } ) |
2 |
1
|
eleq2i |
|- ( A e. RR* <-> A e. ( RR u. { +oo , -oo } ) ) |
3 |
|
elun |
|- ( A e. ( RR u. { +oo , -oo } ) <-> ( A e. RR \/ A e. { +oo , -oo } ) ) |
4 |
|
pnfex |
|- +oo e. _V |
5 |
|
mnfxr |
|- -oo e. RR* |
6 |
5
|
elexi |
|- -oo e. _V |
7 |
4 6
|
elpr2 |
|- ( A e. { +oo , -oo } <-> ( A = +oo \/ A = -oo ) ) |
8 |
7
|
orbi2i |
|- ( ( A e. RR \/ A e. { +oo , -oo } ) <-> ( A e. RR \/ ( A = +oo \/ A = -oo ) ) ) |
9 |
|
3orass |
|- ( ( A e. RR \/ A = +oo \/ A = -oo ) <-> ( A e. RR \/ ( A = +oo \/ A = -oo ) ) ) |
10 |
8 9
|
bitr4i |
|- ( ( A e. RR \/ A e. { +oo , -oo } ) <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
11 |
2 3 10
|
3bitri |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |