Metamath Proof Explorer


Theorem elxr

Description: Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005)

Ref Expression
Assertion elxr
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) )

Proof

Step Hyp Ref Expression
1 df-xr
 |-  RR* = ( RR u. { +oo , -oo } )
2 1 eleq2i
 |-  ( A e. RR* <-> A e. ( RR u. { +oo , -oo } ) )
3 elun
 |-  ( A e. ( RR u. { +oo , -oo } ) <-> ( A e. RR \/ A e. { +oo , -oo } ) )
4 pnfex
 |-  +oo e. _V
5 mnfxr
 |-  -oo e. RR*
6 5 elexi
 |-  -oo e. _V
7 4 6 elpr2
 |-  ( A e. { +oo , -oo } <-> ( A = +oo \/ A = -oo ) )
8 7 orbi2i
 |-  ( ( A e. RR \/ A e. { +oo , -oo } ) <-> ( A e. RR \/ ( A = +oo \/ A = -oo ) ) )
9 3orass
 |-  ( ( A e. RR \/ A = +oo \/ A = -oo ) <-> ( A e. RR \/ ( A = +oo \/ A = -oo ) ) )
10 8 9 bitr4i
 |-  ( ( A e. RR \/ A e. { +oo , -oo } ) <-> ( A e. RR \/ A = +oo \/ A = -oo ) )
11 2 3 10 3bitri
 |-  ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) )