Step |
Hyp |
Ref |
Expression |
1 |
|
elz |
|- ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |
2 |
|
3orrot |
|- ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( N e. NN \/ -u N e. NN \/ N = 0 ) ) |
3 |
|
3orass |
|- ( ( N e. NN \/ -u N e. NN \/ N = 0 ) <-> ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) |
4 |
2 3
|
bitri |
|- ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) |
5 |
|
elnn0 |
|- ( -u N e. NN0 <-> ( -u N e. NN \/ -u N = 0 ) ) |
6 |
|
recn |
|- ( N e. RR -> N e. CC ) |
7 |
6
|
negeq0d |
|- ( N e. RR -> ( N = 0 <-> -u N = 0 ) ) |
8 |
7
|
orbi2d |
|- ( N e. RR -> ( ( -u N e. NN \/ N = 0 ) <-> ( -u N e. NN \/ -u N = 0 ) ) ) |
9 |
5 8
|
bitr4id |
|- ( N e. RR -> ( -u N e. NN0 <-> ( -u N e. NN \/ N = 0 ) ) ) |
10 |
9
|
orbi2d |
|- ( N e. RR -> ( ( N e. NN \/ -u N e. NN0 ) <-> ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) ) |
11 |
4 10
|
bitr4id |
|- ( N e. RR -> ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( N e. NN \/ -u N e. NN0 ) ) ) |
12 |
11
|
pm5.32i |
|- ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) <-> ( N e. RR /\ ( N e. NN \/ -u N e. NN0 ) ) ) |
13 |
1 12
|
bitri |
|- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN \/ -u N e. NN0 ) ) ) |