| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elz |  |-  ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) | 
						
							| 2 |  | andi |  |-  ( ( N e. RR /\ ( ( N = 0 \/ N e. NN ) \/ -u N e. NN ) ) <-> ( ( N e. RR /\ ( N = 0 \/ N e. NN ) ) \/ ( N e. RR /\ -u N e. NN ) ) ) | 
						
							| 3 |  | df-3or |  |-  ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( ( N = 0 \/ N e. NN ) \/ -u N e. NN ) ) | 
						
							| 4 | 3 | anbi2i |  |-  ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) <-> ( N e. RR /\ ( ( N = 0 \/ N e. NN ) \/ -u N e. NN ) ) ) | 
						
							| 5 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 6 | 5 | pm4.71ri |  |-  ( N e. NN0 <-> ( N e. RR /\ N e. NN0 ) ) | 
						
							| 7 |  | elnn0 |  |-  ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) | 
						
							| 8 |  | orcom |  |-  ( ( N e. NN \/ N = 0 ) <-> ( N = 0 \/ N e. NN ) ) | 
						
							| 9 | 7 8 | bitri |  |-  ( N e. NN0 <-> ( N = 0 \/ N e. NN ) ) | 
						
							| 10 | 9 | anbi2i |  |-  ( ( N e. RR /\ N e. NN0 ) <-> ( N e. RR /\ ( N = 0 \/ N e. NN ) ) ) | 
						
							| 11 | 6 10 | bitri |  |-  ( N e. NN0 <-> ( N e. RR /\ ( N = 0 \/ N e. NN ) ) ) | 
						
							| 12 | 11 | orbi1i |  |-  ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) <-> ( ( N e. RR /\ ( N = 0 \/ N e. NN ) ) \/ ( N e. RR /\ -u N e. NN ) ) ) | 
						
							| 13 | 2 4 12 | 3bitr4i |  |-  ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) | 
						
							| 14 | 1 13 | bitri |  |-  ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |