Step |
Hyp |
Ref |
Expression |
1 |
|
elz |
|- ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |
2 |
|
andi |
|- ( ( N e. RR /\ ( ( N = 0 \/ N e. NN ) \/ -u N e. NN ) ) <-> ( ( N e. RR /\ ( N = 0 \/ N e. NN ) ) \/ ( N e. RR /\ -u N e. NN ) ) ) |
3 |
|
df-3or |
|- ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( ( N = 0 \/ N e. NN ) \/ -u N e. NN ) ) |
4 |
3
|
anbi2i |
|- ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) <-> ( N e. RR /\ ( ( N = 0 \/ N e. NN ) \/ -u N e. NN ) ) ) |
5 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
6 |
5
|
pm4.71ri |
|- ( N e. NN0 <-> ( N e. RR /\ N e. NN0 ) ) |
7 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
8 |
|
orcom |
|- ( ( N e. NN \/ N = 0 ) <-> ( N = 0 \/ N e. NN ) ) |
9 |
7 8
|
bitri |
|- ( N e. NN0 <-> ( N = 0 \/ N e. NN ) ) |
10 |
9
|
anbi2i |
|- ( ( N e. RR /\ N e. NN0 ) <-> ( N e. RR /\ ( N = 0 \/ N e. NN ) ) ) |
11 |
6 10
|
bitri |
|- ( N e. NN0 <-> ( N e. RR /\ ( N = 0 \/ N e. NN ) ) ) |
12 |
11
|
orbi1i |
|- ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) <-> ( ( N e. RR /\ ( N = 0 \/ N e. NN ) ) \/ ( N e. RR /\ -u N e. NN ) ) ) |
13 |
2 4 12
|
3bitr4i |
|- ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
14 |
1 13
|
bitri |
|- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |