Metamath Proof Explorer


Theorem embantd

Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013)

Ref Expression
Hypotheses embantd.1
|- ( ph -> ps )
embantd.2
|- ( ph -> ( ch -> th ) )
Assertion embantd
|- ( ph -> ( ( ps -> ch ) -> th ) )

Proof

Step Hyp Ref Expression
1 embantd.1
 |-  ( ph -> ps )
2 embantd.2
 |-  ( ph -> ( ch -> th ) )
3 2 imim2d
 |-  ( ph -> ( ( ps -> ch ) -> ( ps -> th ) ) )
4 1 3 mpid
 |-  ( ph -> ( ( ps -> ch ) -> th ) )