Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
2 |
|
eqid |
|- ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
3 |
|
eqid |
|- ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
4 |
|
oveq2 |
|- ( k = n -> ( 1 / k ) = ( 1 / n ) ) |
5 |
4
|
oveq2d |
|- ( k = n -> ( 1 + ( 1 / k ) ) = ( 1 + ( 1 / n ) ) ) |
6 |
5
|
fveq2d |
|- ( k = n -> ( log ` ( 1 + ( 1 / k ) ) ) = ( log ` ( 1 + ( 1 / n ) ) ) ) |
7 |
4 6
|
oveq12d |
|- ( k = n -> ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) = ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) ) |
8 |
7
|
cbvmptv |
|- ( k e. NN |-> ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) ) = ( n e. NN |-> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) ) |
9 |
1 2 3 8
|
emcllem7 |
|- ( gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) /\ ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) : NN --> ( gamma [,] 1 ) /\ ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) : NN --> ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) |
10 |
9
|
simp1i |
|- gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) |