Step |
Hyp |
Ref |
Expression |
1 |
|
emcl.1 |
|- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
2 |
|
emcl.2 |
|- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
3 |
|
fzfid |
|- ( n e. NN -> ( 1 ... n ) e. Fin ) |
4 |
|
elfznn |
|- ( m e. ( 1 ... n ) -> m e. NN ) |
5 |
4
|
adantl |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> m e. NN ) |
6 |
5
|
nnrecred |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( 1 / m ) e. RR ) |
7 |
3 6
|
fsumrecl |
|- ( n e. NN -> sum_ m e. ( 1 ... n ) ( 1 / m ) e. RR ) |
8 |
|
nnrp |
|- ( n e. NN -> n e. RR+ ) |
9 |
8
|
relogcld |
|- ( n e. NN -> ( log ` n ) e. RR ) |
10 |
7 9
|
resubcld |
|- ( n e. NN -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) e. RR ) |
11 |
1 10
|
fmpti |
|- F : NN --> RR |
12 |
|
peano2nn |
|- ( n e. NN -> ( n + 1 ) e. NN ) |
13 |
12
|
nnrpd |
|- ( n e. NN -> ( n + 1 ) e. RR+ ) |
14 |
13
|
relogcld |
|- ( n e. NN -> ( log ` ( n + 1 ) ) e. RR ) |
15 |
7 14
|
resubcld |
|- ( n e. NN -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) e. RR ) |
16 |
2 15
|
fmpti |
|- G : NN --> RR |
17 |
11 16
|
pm3.2i |
|- ( F : NN --> RR /\ G : NN --> RR ) |