Step |
Hyp |
Ref |
Expression |
1 |
|
emcl.1 |
|- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
2 |
|
emcl.2 |
|- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
3 |
|
emcl.3 |
|- H = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
4 |
|
peano2nn |
|- ( N e. NN -> ( N + 1 ) e. NN ) |
5 |
4
|
nnrpd |
|- ( N e. NN -> ( N + 1 ) e. RR+ ) |
6 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
7 |
5 6
|
relogdivd |
|- ( N e. NN -> ( log ` ( ( N + 1 ) / N ) ) = ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) |
8 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
9 |
|
1cnd |
|- ( N e. NN -> 1 e. CC ) |
10 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
11 |
8 9 8 10
|
divdird |
|- ( N e. NN -> ( ( N + 1 ) / N ) = ( ( N / N ) + ( 1 / N ) ) ) |
12 |
8 10
|
dividd |
|- ( N e. NN -> ( N / N ) = 1 ) |
13 |
12
|
oveq1d |
|- ( N e. NN -> ( ( N / N ) + ( 1 / N ) ) = ( 1 + ( 1 / N ) ) ) |
14 |
11 13
|
eqtr2d |
|- ( N e. NN -> ( 1 + ( 1 / N ) ) = ( ( N + 1 ) / N ) ) |
15 |
14
|
fveq2d |
|- ( N e. NN -> ( log ` ( 1 + ( 1 / N ) ) ) = ( log ` ( ( N + 1 ) / N ) ) ) |
16 |
|
fzfid |
|- ( N e. NN -> ( 1 ... N ) e. Fin ) |
17 |
|
elfznn |
|- ( m e. ( 1 ... N ) -> m e. NN ) |
18 |
17
|
adantl |
|- ( ( N e. NN /\ m e. ( 1 ... N ) ) -> m e. NN ) |
19 |
18
|
nnrecred |
|- ( ( N e. NN /\ m e. ( 1 ... N ) ) -> ( 1 / m ) e. RR ) |
20 |
16 19
|
fsumrecl |
|- ( N e. NN -> sum_ m e. ( 1 ... N ) ( 1 / m ) e. RR ) |
21 |
20
|
recnd |
|- ( N e. NN -> sum_ m e. ( 1 ... N ) ( 1 / m ) e. CC ) |
22 |
6
|
relogcld |
|- ( N e. NN -> ( log ` N ) e. RR ) |
23 |
22
|
recnd |
|- ( N e. NN -> ( log ` N ) e. CC ) |
24 |
5
|
relogcld |
|- ( N e. NN -> ( log ` ( N + 1 ) ) e. RR ) |
25 |
24
|
recnd |
|- ( N e. NN -> ( log ` ( N + 1 ) ) e. CC ) |
26 |
21 23 25
|
nnncan1d |
|- ( N e. NN -> ( ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) - ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) = ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) |
27 |
7 15 26
|
3eqtr4d |
|- ( N e. NN -> ( log ` ( 1 + ( 1 / N ) ) ) = ( ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) - ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) ) |
28 |
|
oveq2 |
|- ( n = N -> ( 1 / n ) = ( 1 / N ) ) |
29 |
28
|
oveq2d |
|- ( n = N -> ( 1 + ( 1 / n ) ) = ( 1 + ( 1 / N ) ) ) |
30 |
29
|
fveq2d |
|- ( n = N -> ( log ` ( 1 + ( 1 / n ) ) ) = ( log ` ( 1 + ( 1 / N ) ) ) ) |
31 |
|
fvex |
|- ( log ` ( 1 + ( 1 / N ) ) ) e. _V |
32 |
30 3 31
|
fvmpt |
|- ( N e. NN -> ( H ` N ) = ( log ` ( 1 + ( 1 / N ) ) ) ) |
33 |
|
oveq2 |
|- ( n = N -> ( 1 ... n ) = ( 1 ... N ) ) |
34 |
33
|
sumeq1d |
|- ( n = N -> sum_ m e. ( 1 ... n ) ( 1 / m ) = sum_ m e. ( 1 ... N ) ( 1 / m ) ) |
35 |
|
fveq2 |
|- ( n = N -> ( log ` n ) = ( log ` N ) ) |
36 |
34 35
|
oveq12d |
|- ( n = N -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) ) |
37 |
|
ovex |
|- ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) e. _V |
38 |
36 1 37
|
fvmpt |
|- ( N e. NN -> ( F ` N ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) ) |
39 |
|
fvoveq1 |
|- ( n = N -> ( log ` ( n + 1 ) ) = ( log ` ( N + 1 ) ) ) |
40 |
34 39
|
oveq12d |
|- ( n = N -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) |
41 |
|
ovex |
|- ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. _V |
42 |
40 2 41
|
fvmpt |
|- ( N e. NN -> ( G ` N ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) |
43 |
38 42
|
oveq12d |
|- ( N e. NN -> ( ( F ` N ) - ( G ` N ) ) = ( ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) - ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) ) |
44 |
27 32 43
|
3eqtr4d |
|- ( N e. NN -> ( H ` N ) = ( ( F ` N ) - ( G ` N ) ) ) |