Step |
Hyp |
Ref |
Expression |
1 |
|
emcl.1 |
|- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
2 |
|
emcl.2 |
|- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
3 |
|
emcl.3 |
|- H = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
4 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
5 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
6 |
|
ax-1cn |
|- 1 e. CC |
7 |
|
divcnv |
|- ( 1 e. CC -> ( n e. NN |-> ( 1 / n ) ) ~~> 0 ) |
8 |
6 7
|
mp1i |
|- ( T. -> ( n e. NN |-> ( 1 / n ) ) ~~> 0 ) |
9 |
|
nnex |
|- NN e. _V |
10 |
9
|
mptex |
|- ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) e. _V |
11 |
3 10
|
eqeltri |
|- H e. _V |
12 |
11
|
a1i |
|- ( T. -> H e. _V ) |
13 |
|
oveq2 |
|- ( n = m -> ( 1 / n ) = ( 1 / m ) ) |
14 |
|
eqid |
|- ( n e. NN |-> ( 1 / n ) ) = ( n e. NN |-> ( 1 / n ) ) |
15 |
|
ovex |
|- ( 1 / m ) e. _V |
16 |
13 14 15
|
fvmpt |
|- ( m e. NN -> ( ( n e. NN |-> ( 1 / n ) ) ` m ) = ( 1 / m ) ) |
17 |
16
|
adantl |
|- ( ( T. /\ m e. NN ) -> ( ( n e. NN |-> ( 1 / n ) ) ` m ) = ( 1 / m ) ) |
18 |
|
nnrecre |
|- ( m e. NN -> ( 1 / m ) e. RR ) |
19 |
18
|
adantl |
|- ( ( T. /\ m e. NN ) -> ( 1 / m ) e. RR ) |
20 |
17 19
|
eqeltrd |
|- ( ( T. /\ m e. NN ) -> ( ( n e. NN |-> ( 1 / n ) ) ` m ) e. RR ) |
21 |
13
|
oveq2d |
|- ( n = m -> ( 1 + ( 1 / n ) ) = ( 1 + ( 1 / m ) ) ) |
22 |
21
|
fveq2d |
|- ( n = m -> ( log ` ( 1 + ( 1 / n ) ) ) = ( log ` ( 1 + ( 1 / m ) ) ) ) |
23 |
|
fvex |
|- ( log ` ( 1 + ( 1 / m ) ) ) e. _V |
24 |
22 3 23
|
fvmpt |
|- ( m e. NN -> ( H ` m ) = ( log ` ( 1 + ( 1 / m ) ) ) ) |
25 |
24
|
adantl |
|- ( ( T. /\ m e. NN ) -> ( H ` m ) = ( log ` ( 1 + ( 1 / m ) ) ) ) |
26 |
|
1rp |
|- 1 e. RR+ |
27 |
|
nnrp |
|- ( m e. NN -> m e. RR+ ) |
28 |
27
|
adantl |
|- ( ( T. /\ m e. NN ) -> m e. RR+ ) |
29 |
28
|
rpreccld |
|- ( ( T. /\ m e. NN ) -> ( 1 / m ) e. RR+ ) |
30 |
|
rpaddcl |
|- ( ( 1 e. RR+ /\ ( 1 / m ) e. RR+ ) -> ( 1 + ( 1 / m ) ) e. RR+ ) |
31 |
26 29 30
|
sylancr |
|- ( ( T. /\ m e. NN ) -> ( 1 + ( 1 / m ) ) e. RR+ ) |
32 |
31
|
rpred |
|- ( ( T. /\ m e. NN ) -> ( 1 + ( 1 / m ) ) e. RR ) |
33 |
|
1re |
|- 1 e. RR |
34 |
|
ltaddrp |
|- ( ( 1 e. RR /\ ( 1 / m ) e. RR+ ) -> 1 < ( 1 + ( 1 / m ) ) ) |
35 |
33 29 34
|
sylancr |
|- ( ( T. /\ m e. NN ) -> 1 < ( 1 + ( 1 / m ) ) ) |
36 |
32 35
|
rplogcld |
|- ( ( T. /\ m e. NN ) -> ( log ` ( 1 + ( 1 / m ) ) ) e. RR+ ) |
37 |
25 36
|
eqeltrd |
|- ( ( T. /\ m e. NN ) -> ( H ` m ) e. RR+ ) |
38 |
37
|
rpred |
|- ( ( T. /\ m e. NN ) -> ( H ` m ) e. RR ) |
39 |
31
|
relogcld |
|- ( ( T. /\ m e. NN ) -> ( log ` ( 1 + ( 1 / m ) ) ) e. RR ) |
40 |
|
efgt1p |
|- ( ( 1 / m ) e. RR+ -> ( 1 + ( 1 / m ) ) < ( exp ` ( 1 / m ) ) ) |
41 |
29 40
|
syl |
|- ( ( T. /\ m e. NN ) -> ( 1 + ( 1 / m ) ) < ( exp ` ( 1 / m ) ) ) |
42 |
19
|
rpefcld |
|- ( ( T. /\ m e. NN ) -> ( exp ` ( 1 / m ) ) e. RR+ ) |
43 |
|
logltb |
|- ( ( ( 1 + ( 1 / m ) ) e. RR+ /\ ( exp ` ( 1 / m ) ) e. RR+ ) -> ( ( 1 + ( 1 / m ) ) < ( exp ` ( 1 / m ) ) <-> ( log ` ( 1 + ( 1 / m ) ) ) < ( log ` ( exp ` ( 1 / m ) ) ) ) ) |
44 |
31 42 43
|
syl2anc |
|- ( ( T. /\ m e. NN ) -> ( ( 1 + ( 1 / m ) ) < ( exp ` ( 1 / m ) ) <-> ( log ` ( 1 + ( 1 / m ) ) ) < ( log ` ( exp ` ( 1 / m ) ) ) ) ) |
45 |
41 44
|
mpbid |
|- ( ( T. /\ m e. NN ) -> ( log ` ( 1 + ( 1 / m ) ) ) < ( log ` ( exp ` ( 1 / m ) ) ) ) |
46 |
19
|
relogefd |
|- ( ( T. /\ m e. NN ) -> ( log ` ( exp ` ( 1 / m ) ) ) = ( 1 / m ) ) |
47 |
45 46
|
breqtrd |
|- ( ( T. /\ m e. NN ) -> ( log ` ( 1 + ( 1 / m ) ) ) < ( 1 / m ) ) |
48 |
39 19 47
|
ltled |
|- ( ( T. /\ m e. NN ) -> ( log ` ( 1 + ( 1 / m ) ) ) <_ ( 1 / m ) ) |
49 |
48 25 17
|
3brtr4d |
|- ( ( T. /\ m e. NN ) -> ( H ` m ) <_ ( ( n e. NN |-> ( 1 / n ) ) ` m ) ) |
50 |
37
|
rpge0d |
|- ( ( T. /\ m e. NN ) -> 0 <_ ( H ` m ) ) |
51 |
4 5 8 12 20 38 49 50
|
climsqz2 |
|- ( T. -> H ~~> 0 ) |
52 |
51
|
mptru |
|- H ~~> 0 |