Step |
Hyp |
Ref |
Expression |
1 |
|
emcl.1 |
|- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
2 |
|
emcl.2 |
|- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
3 |
|
emcl.3 |
|- H = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
4 |
|
emcl.4 |
|- T = ( n e. NN |-> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) ) |
5 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
6 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
7 |
|
oveq2 |
|- ( n = k -> ( 1 / n ) = ( 1 / k ) ) |
8 |
7
|
oveq2d |
|- ( n = k -> ( 1 + ( 1 / n ) ) = ( 1 + ( 1 / k ) ) ) |
9 |
8
|
fveq2d |
|- ( n = k -> ( log ` ( 1 + ( 1 / n ) ) ) = ( log ` ( 1 + ( 1 / k ) ) ) ) |
10 |
7 9
|
oveq12d |
|- ( n = k -> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) = ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) ) |
11 |
|
ovex |
|- ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) e. _V |
12 |
10 4 11
|
fvmpt |
|- ( k e. NN -> ( T ` k ) = ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) ) |
13 |
12
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( T ` k ) = ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) ) |
14 |
|
nnrecre |
|- ( k e. NN -> ( 1 / k ) e. RR ) |
15 |
14
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( 1 / k ) e. RR ) |
16 |
|
1rp |
|- 1 e. RR+ |
17 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
18 |
17
|
rpreccld |
|- ( k e. NN -> ( 1 / k ) e. RR+ ) |
19 |
18
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( 1 / k ) e. RR+ ) |
20 |
|
rpaddcl |
|- ( ( 1 e. RR+ /\ ( 1 / k ) e. RR+ ) -> ( 1 + ( 1 / k ) ) e. RR+ ) |
21 |
16 19 20
|
sylancr |
|- ( ( T. /\ k e. NN ) -> ( 1 + ( 1 / k ) ) e. RR+ ) |
22 |
21
|
relogcld |
|- ( ( T. /\ k e. NN ) -> ( log ` ( 1 + ( 1 / k ) ) ) e. RR ) |
23 |
15 22
|
resubcld |
|- ( ( T. /\ k e. NN ) -> ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) e. RR ) |
24 |
23
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) e. CC ) |
25 |
1 2 3 4
|
emcllem5 |
|- G = seq 1 ( + , T ) |
26 |
1 2
|
emcllem1 |
|- ( F : NN --> RR /\ G : NN --> RR ) |
27 |
26
|
simpri |
|- G : NN --> RR |
28 |
27
|
a1i |
|- ( T. -> G : NN --> RR ) |
29 |
1 2
|
emcllem2 |
|- ( k e. NN -> ( ( F ` ( k + 1 ) ) <_ ( F ` k ) /\ ( G ` k ) <_ ( G ` ( k + 1 ) ) ) ) |
30 |
29
|
simprd |
|- ( k e. NN -> ( G ` k ) <_ ( G ` ( k + 1 ) ) ) |
31 |
30
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( G ` ( k + 1 ) ) ) |
32 |
|
1nn |
|- 1 e. NN |
33 |
26
|
simpli |
|- F : NN --> RR |
34 |
33
|
ffvelrni |
|- ( 1 e. NN -> ( F ` 1 ) e. RR ) |
35 |
32 34
|
ax-mp |
|- ( F ` 1 ) e. RR |
36 |
27
|
ffvelrni |
|- ( k e. NN -> ( G ` k ) e. RR ) |
37 |
36
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) e. RR ) |
38 |
33
|
ffvelrni |
|- ( k e. NN -> ( F ` k ) e. RR ) |
39 |
38
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) e. RR ) |
40 |
35
|
a1i |
|- ( ( T. /\ k e. NN ) -> ( F ` 1 ) e. RR ) |
41 |
|
fvex |
|- ( log ` ( 1 + ( 1 / k ) ) ) e. _V |
42 |
9 3 41
|
fvmpt |
|- ( k e. NN -> ( H ` k ) = ( log ` ( 1 + ( 1 / k ) ) ) ) |
43 |
42
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( H ` k ) = ( log ` ( 1 + ( 1 / k ) ) ) ) |
44 |
1 2 3
|
emcllem3 |
|- ( k e. NN -> ( H ` k ) = ( ( F ` k ) - ( G ` k ) ) ) |
45 |
44
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( H ` k ) = ( ( F ` k ) - ( G ` k ) ) ) |
46 |
43 45
|
eqtr3d |
|- ( ( T. /\ k e. NN ) -> ( log ` ( 1 + ( 1 / k ) ) ) = ( ( F ` k ) - ( G ` k ) ) ) |
47 |
|
1re |
|- 1 e. RR |
48 |
|
readdcl |
|- ( ( 1 e. RR /\ ( 1 / k ) e. RR ) -> ( 1 + ( 1 / k ) ) e. RR ) |
49 |
47 15 48
|
sylancr |
|- ( ( T. /\ k e. NN ) -> ( 1 + ( 1 / k ) ) e. RR ) |
50 |
|
ltaddrp |
|- ( ( 1 e. RR /\ ( 1 / k ) e. RR+ ) -> 1 < ( 1 + ( 1 / k ) ) ) |
51 |
47 19 50
|
sylancr |
|- ( ( T. /\ k e. NN ) -> 1 < ( 1 + ( 1 / k ) ) ) |
52 |
49 51
|
rplogcld |
|- ( ( T. /\ k e. NN ) -> ( log ` ( 1 + ( 1 / k ) ) ) e. RR+ ) |
53 |
46 52
|
eqeltrrd |
|- ( ( T. /\ k e. NN ) -> ( ( F ` k ) - ( G ` k ) ) e. RR+ ) |
54 |
53
|
rpge0d |
|- ( ( T. /\ k e. NN ) -> 0 <_ ( ( F ` k ) - ( G ` k ) ) ) |
55 |
39 37
|
subge0d |
|- ( ( T. /\ k e. NN ) -> ( 0 <_ ( ( F ` k ) - ( G ` k ) ) <-> ( G ` k ) <_ ( F ` k ) ) ) |
56 |
54 55
|
mpbid |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( F ` k ) ) |
57 |
|
fveq2 |
|- ( x = 1 -> ( F ` x ) = ( F ` 1 ) ) |
58 |
57
|
breq1d |
|- ( x = 1 -> ( ( F ` x ) <_ ( F ` 1 ) <-> ( F ` 1 ) <_ ( F ` 1 ) ) ) |
59 |
|
fveq2 |
|- ( x = k -> ( F ` x ) = ( F ` k ) ) |
60 |
59
|
breq1d |
|- ( x = k -> ( ( F ` x ) <_ ( F ` 1 ) <-> ( F ` k ) <_ ( F ` 1 ) ) ) |
61 |
|
fveq2 |
|- ( x = ( k + 1 ) -> ( F ` x ) = ( F ` ( k + 1 ) ) ) |
62 |
61
|
breq1d |
|- ( x = ( k + 1 ) -> ( ( F ` x ) <_ ( F ` 1 ) <-> ( F ` ( k + 1 ) ) <_ ( F ` 1 ) ) ) |
63 |
35
|
leidi |
|- ( F ` 1 ) <_ ( F ` 1 ) |
64 |
29
|
simpld |
|- ( k e. NN -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
65 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
66 |
33
|
ffvelrni |
|- ( ( k + 1 ) e. NN -> ( F ` ( k + 1 ) ) e. RR ) |
67 |
65 66
|
syl |
|- ( k e. NN -> ( F ` ( k + 1 ) ) e. RR ) |
68 |
35
|
a1i |
|- ( k e. NN -> ( F ` 1 ) e. RR ) |
69 |
|
letr |
|- ( ( ( F ` ( k + 1 ) ) e. RR /\ ( F ` k ) e. RR /\ ( F ` 1 ) e. RR ) -> ( ( ( F ` ( k + 1 ) ) <_ ( F ` k ) /\ ( F ` k ) <_ ( F ` 1 ) ) -> ( F ` ( k + 1 ) ) <_ ( F ` 1 ) ) ) |
70 |
67 38 68 69
|
syl3anc |
|- ( k e. NN -> ( ( ( F ` ( k + 1 ) ) <_ ( F ` k ) /\ ( F ` k ) <_ ( F ` 1 ) ) -> ( F ` ( k + 1 ) ) <_ ( F ` 1 ) ) ) |
71 |
64 70
|
mpand |
|- ( k e. NN -> ( ( F ` k ) <_ ( F ` 1 ) -> ( F ` ( k + 1 ) ) <_ ( F ` 1 ) ) ) |
72 |
58 60 62 60 63 71
|
nnind |
|- ( k e. NN -> ( F ` k ) <_ ( F ` 1 ) ) |
73 |
72
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) <_ ( F ` 1 ) ) |
74 |
37 39 40 56 73
|
letrd |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( F ` 1 ) ) |
75 |
74
|
ralrimiva |
|- ( T. -> A. k e. NN ( G ` k ) <_ ( F ` 1 ) ) |
76 |
|
brralrspcev |
|- ( ( ( F ` 1 ) e. RR /\ A. k e. NN ( G ` k ) <_ ( F ` 1 ) ) -> E. x e. RR A. k e. NN ( G ` k ) <_ x ) |
77 |
35 75 76
|
sylancr |
|- ( T. -> E. x e. RR A. k e. NN ( G ` k ) <_ x ) |
78 |
5 6 28 31 77
|
climsup |
|- ( T. -> G ~~> sup ( ran G , RR , < ) ) |
79 |
25 78
|
eqbrtrrid |
|- ( T. -> seq 1 ( + , T ) ~~> sup ( ran G , RR , < ) ) |
80 |
|
climrel |
|- Rel ~~> |
81 |
80
|
releldmi |
|- ( seq 1 ( + , T ) ~~> sup ( ran G , RR , < ) -> seq 1 ( + , T ) e. dom ~~> ) |
82 |
79 81
|
syl |
|- ( T. -> seq 1 ( + , T ) e. dom ~~> ) |
83 |
5 6 13 24 82
|
isumclim2 |
|- ( T. -> seq 1 ( + , T ) ~~> sum_ k e. NN ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) ) |
84 |
|
df-em |
|- gamma = sum_ k e. NN ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) |
85 |
83 25 84
|
3brtr4g |
|- ( T. -> G ~~> gamma ) |
86 |
|
nnex |
|- NN e. _V |
87 |
86
|
mptex |
|- ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) e. _V |
88 |
1 87
|
eqeltri |
|- F e. _V |
89 |
88
|
a1i |
|- ( T. -> F e. _V ) |
90 |
1 2 3
|
emcllem4 |
|- H ~~> 0 |
91 |
90
|
a1i |
|- ( T. -> H ~~> 0 ) |
92 |
37
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) e. CC ) |
93 |
39 37
|
resubcld |
|- ( ( T. /\ k e. NN ) -> ( ( F ` k ) - ( G ` k ) ) e. RR ) |
94 |
45 93
|
eqeltrd |
|- ( ( T. /\ k e. NN ) -> ( H ` k ) e. RR ) |
95 |
94
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( H ` k ) e. CC ) |
96 |
45
|
oveq2d |
|- ( ( T. /\ k e. NN ) -> ( ( G ` k ) + ( H ` k ) ) = ( ( G ` k ) + ( ( F ` k ) - ( G ` k ) ) ) ) |
97 |
39
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) e. CC ) |
98 |
92 97
|
pncan3d |
|- ( ( T. /\ k e. NN ) -> ( ( G ` k ) + ( ( F ` k ) - ( G ` k ) ) ) = ( F ` k ) ) |
99 |
96 98
|
eqtr2d |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) = ( ( G ` k ) + ( H ` k ) ) ) |
100 |
5 6 85 89 91 92 95 99
|
climadd |
|- ( T. -> F ~~> ( gamma + 0 ) ) |
101 |
85
|
mptru |
|- G ~~> gamma |
102 |
|
climcl |
|- ( G ~~> gamma -> gamma e. CC ) |
103 |
101 102
|
ax-mp |
|- gamma e. CC |
104 |
103
|
addid1i |
|- ( gamma + 0 ) = gamma |
105 |
100 104
|
breqtrdi |
|- ( T. -> F ~~> gamma ) |
106 |
105
|
mptru |
|- F ~~> gamma |
107 |
106 101
|
pm3.2i |
|- ( F ~~> gamma /\ G ~~> gamma ) |