Step |
Hyp |
Ref |
Expression |
1 |
|
emcl.1 |
|- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
2 |
|
emcl.2 |
|- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
3 |
|
emcl.3 |
|- H = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
4 |
|
emcl.4 |
|- T = ( n e. NN |-> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) ) |
5 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
6 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
7 |
1 2 3 4
|
emcllem6 |
|- ( F ~~> gamma /\ G ~~> gamma ) |
8 |
7
|
simpri |
|- G ~~> gamma |
9 |
8
|
a1i |
|- ( T. -> G ~~> gamma ) |
10 |
1 2
|
emcllem1 |
|- ( F : NN --> RR /\ G : NN --> RR ) |
11 |
10
|
simpri |
|- G : NN --> RR |
12 |
11
|
ffvelrni |
|- ( k e. NN -> ( G ` k ) e. RR ) |
13 |
12
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) e. RR ) |
14 |
5 6 9 13
|
climrecl |
|- ( T. -> gamma e. RR ) |
15 |
|
1nn |
|- 1 e. NN |
16 |
|
simpr |
|- ( ( T. /\ i e. NN ) -> i e. NN ) |
17 |
8
|
a1i |
|- ( ( T. /\ i e. NN ) -> G ~~> gamma ) |
18 |
12
|
adantl |
|- ( ( ( T. /\ i e. NN ) /\ k e. NN ) -> ( G ` k ) e. RR ) |
19 |
1 2
|
emcllem2 |
|- ( k e. NN -> ( ( F ` ( k + 1 ) ) <_ ( F ` k ) /\ ( G ` k ) <_ ( G ` ( k + 1 ) ) ) ) |
20 |
19
|
simprd |
|- ( k e. NN -> ( G ` k ) <_ ( G ` ( k + 1 ) ) ) |
21 |
20
|
adantl |
|- ( ( ( T. /\ i e. NN ) /\ k e. NN ) -> ( G ` k ) <_ ( G ` ( k + 1 ) ) ) |
22 |
5 16 17 18 21
|
climub |
|- ( ( T. /\ i e. NN ) -> ( G ` i ) <_ gamma ) |
23 |
22
|
ralrimiva |
|- ( T. -> A. i e. NN ( G ` i ) <_ gamma ) |
24 |
|
fveq2 |
|- ( i = 1 -> ( G ` i ) = ( G ` 1 ) ) |
25 |
|
oveq2 |
|- ( n = 1 -> ( 1 ... n ) = ( 1 ... 1 ) ) |
26 |
25
|
sumeq1d |
|- ( n = 1 -> sum_ m e. ( 1 ... n ) ( 1 / m ) = sum_ m e. ( 1 ... 1 ) ( 1 / m ) ) |
27 |
|
1z |
|- 1 e. ZZ |
28 |
|
ax-1cn |
|- 1 e. CC |
29 |
|
oveq2 |
|- ( m = 1 -> ( 1 / m ) = ( 1 / 1 ) ) |
30 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
31 |
29 30
|
eqtrdi |
|- ( m = 1 -> ( 1 / m ) = 1 ) |
32 |
31
|
fsum1 |
|- ( ( 1 e. ZZ /\ 1 e. CC ) -> sum_ m e. ( 1 ... 1 ) ( 1 / m ) = 1 ) |
33 |
27 28 32
|
mp2an |
|- sum_ m e. ( 1 ... 1 ) ( 1 / m ) = 1 |
34 |
26 33
|
eqtrdi |
|- ( n = 1 -> sum_ m e. ( 1 ... n ) ( 1 / m ) = 1 ) |
35 |
|
oveq1 |
|- ( n = 1 -> ( n + 1 ) = ( 1 + 1 ) ) |
36 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
37 |
35 36
|
eqtr4di |
|- ( n = 1 -> ( n + 1 ) = 2 ) |
38 |
37
|
fveq2d |
|- ( n = 1 -> ( log ` ( n + 1 ) ) = ( log ` 2 ) ) |
39 |
34 38
|
oveq12d |
|- ( n = 1 -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) = ( 1 - ( log ` 2 ) ) ) |
40 |
|
1re |
|- 1 e. RR |
41 |
|
2rp |
|- 2 e. RR+ |
42 |
|
relogcl |
|- ( 2 e. RR+ -> ( log ` 2 ) e. RR ) |
43 |
41 42
|
ax-mp |
|- ( log ` 2 ) e. RR |
44 |
40 43
|
resubcli |
|- ( 1 - ( log ` 2 ) ) e. RR |
45 |
44
|
elexi |
|- ( 1 - ( log ` 2 ) ) e. _V |
46 |
39 2 45
|
fvmpt |
|- ( 1 e. NN -> ( G ` 1 ) = ( 1 - ( log ` 2 ) ) ) |
47 |
15 46
|
ax-mp |
|- ( G ` 1 ) = ( 1 - ( log ` 2 ) ) |
48 |
24 47
|
eqtrdi |
|- ( i = 1 -> ( G ` i ) = ( 1 - ( log ` 2 ) ) ) |
49 |
48
|
breq1d |
|- ( i = 1 -> ( ( G ` i ) <_ gamma <-> ( 1 - ( log ` 2 ) ) <_ gamma ) ) |
50 |
49
|
rspcva |
|- ( ( 1 e. NN /\ A. i e. NN ( G ` i ) <_ gamma ) -> ( 1 - ( log ` 2 ) ) <_ gamma ) |
51 |
15 23 50
|
sylancr |
|- ( T. -> ( 1 - ( log ` 2 ) ) <_ gamma ) |
52 |
|
fveq2 |
|- ( x = i -> ( F ` x ) = ( F ` i ) ) |
53 |
52
|
negeqd |
|- ( x = i -> -u ( F ` x ) = -u ( F ` i ) ) |
54 |
|
eqid |
|- ( x e. NN |-> -u ( F ` x ) ) = ( x e. NN |-> -u ( F ` x ) ) |
55 |
|
negex |
|- -u ( F ` i ) e. _V |
56 |
53 54 55
|
fvmpt |
|- ( i e. NN -> ( ( x e. NN |-> -u ( F ` x ) ) ` i ) = -u ( F ` i ) ) |
57 |
56
|
adantl |
|- ( ( T. /\ i e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` i ) = -u ( F ` i ) ) |
58 |
7
|
simpli |
|- F ~~> gamma |
59 |
58
|
a1i |
|- ( T. -> F ~~> gamma ) |
60 |
|
0cnd |
|- ( T. -> 0 e. CC ) |
61 |
|
nnex |
|- NN e. _V |
62 |
61
|
mptex |
|- ( x e. NN |-> -u ( F ` x ) ) e. _V |
63 |
62
|
a1i |
|- ( T. -> ( x e. NN |-> -u ( F ` x ) ) e. _V ) |
64 |
10
|
simpli |
|- F : NN --> RR |
65 |
64
|
ffvelrni |
|- ( k e. NN -> ( F ` k ) e. RR ) |
66 |
65
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) e. RR ) |
67 |
66
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) e. CC ) |
68 |
|
fveq2 |
|- ( x = k -> ( F ` x ) = ( F ` k ) ) |
69 |
68
|
negeqd |
|- ( x = k -> -u ( F ` x ) = -u ( F ` k ) ) |
70 |
|
negex |
|- -u ( F ` k ) e. _V |
71 |
69 54 70
|
fvmpt |
|- ( k e. NN -> ( ( x e. NN |-> -u ( F ` x ) ) ` k ) = -u ( F ` k ) ) |
72 |
71
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` k ) = -u ( F ` k ) ) |
73 |
|
df-neg |
|- -u ( F ` k ) = ( 0 - ( F ` k ) ) |
74 |
72 73
|
eqtrdi |
|- ( ( T. /\ k e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` k ) = ( 0 - ( F ` k ) ) ) |
75 |
5 6 59 60 63 67 74
|
climsubc2 |
|- ( T. -> ( x e. NN |-> -u ( F ` x ) ) ~~> ( 0 - gamma ) ) |
76 |
75
|
adantr |
|- ( ( T. /\ i e. NN ) -> ( x e. NN |-> -u ( F ` x ) ) ~~> ( 0 - gamma ) ) |
77 |
66
|
renegcld |
|- ( ( T. /\ k e. NN ) -> -u ( F ` k ) e. RR ) |
78 |
72 77
|
eqeltrd |
|- ( ( T. /\ k e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` k ) e. RR ) |
79 |
78
|
adantlr |
|- ( ( ( T. /\ i e. NN ) /\ k e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` k ) e. RR ) |
80 |
19
|
simpld |
|- ( k e. NN -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
81 |
80
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
82 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
83 |
82
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( k + 1 ) e. NN ) |
84 |
64
|
ffvelrni |
|- ( ( k + 1 ) e. NN -> ( F ` ( k + 1 ) ) e. RR ) |
85 |
83 84
|
syl |
|- ( ( T. /\ k e. NN ) -> ( F ` ( k + 1 ) ) e. RR ) |
86 |
85 66
|
lenegd |
|- ( ( T. /\ k e. NN ) -> ( ( F ` ( k + 1 ) ) <_ ( F ` k ) <-> -u ( F ` k ) <_ -u ( F ` ( k + 1 ) ) ) ) |
87 |
81 86
|
mpbid |
|- ( ( T. /\ k e. NN ) -> -u ( F ` k ) <_ -u ( F ` ( k + 1 ) ) ) |
88 |
|
fveq2 |
|- ( x = ( k + 1 ) -> ( F ` x ) = ( F ` ( k + 1 ) ) ) |
89 |
88
|
negeqd |
|- ( x = ( k + 1 ) -> -u ( F ` x ) = -u ( F ` ( k + 1 ) ) ) |
90 |
|
negex |
|- -u ( F ` ( k + 1 ) ) e. _V |
91 |
89 54 90
|
fvmpt |
|- ( ( k + 1 ) e. NN -> ( ( x e. NN |-> -u ( F ` x ) ) ` ( k + 1 ) ) = -u ( F ` ( k + 1 ) ) ) |
92 |
83 91
|
syl |
|- ( ( T. /\ k e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` ( k + 1 ) ) = -u ( F ` ( k + 1 ) ) ) |
93 |
87 72 92
|
3brtr4d |
|- ( ( T. /\ k e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` k ) <_ ( ( x e. NN |-> -u ( F ` x ) ) ` ( k + 1 ) ) ) |
94 |
93
|
adantlr |
|- ( ( ( T. /\ i e. NN ) /\ k e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` k ) <_ ( ( x e. NN |-> -u ( F ` x ) ) ` ( k + 1 ) ) ) |
95 |
5 16 76 79 94
|
climub |
|- ( ( T. /\ i e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` i ) <_ ( 0 - gamma ) ) |
96 |
57 95
|
eqbrtrrd |
|- ( ( T. /\ i e. NN ) -> -u ( F ` i ) <_ ( 0 - gamma ) ) |
97 |
|
df-neg |
|- -u gamma = ( 0 - gamma ) |
98 |
96 97
|
breqtrrdi |
|- ( ( T. /\ i e. NN ) -> -u ( F ` i ) <_ -u gamma ) |
99 |
14
|
mptru |
|- gamma e. RR |
100 |
64
|
ffvelrni |
|- ( i e. NN -> ( F ` i ) e. RR ) |
101 |
100
|
adantl |
|- ( ( T. /\ i e. NN ) -> ( F ` i ) e. RR ) |
102 |
|
leneg |
|- ( ( gamma e. RR /\ ( F ` i ) e. RR ) -> ( gamma <_ ( F ` i ) <-> -u ( F ` i ) <_ -u gamma ) ) |
103 |
99 101 102
|
sylancr |
|- ( ( T. /\ i e. NN ) -> ( gamma <_ ( F ` i ) <-> -u ( F ` i ) <_ -u gamma ) ) |
104 |
98 103
|
mpbird |
|- ( ( T. /\ i e. NN ) -> gamma <_ ( F ` i ) ) |
105 |
104
|
ralrimiva |
|- ( T. -> A. i e. NN gamma <_ ( F ` i ) ) |
106 |
|
fveq2 |
|- ( i = 1 -> ( F ` i ) = ( F ` 1 ) ) |
107 |
|
fveq2 |
|- ( n = 1 -> ( log ` n ) = ( log ` 1 ) ) |
108 |
|
log1 |
|- ( log ` 1 ) = 0 |
109 |
107 108
|
eqtrdi |
|- ( n = 1 -> ( log ` n ) = 0 ) |
110 |
34 109
|
oveq12d |
|- ( n = 1 -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) = ( 1 - 0 ) ) |
111 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
112 |
110 111
|
eqtrdi |
|- ( n = 1 -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) = 1 ) |
113 |
40
|
elexi |
|- 1 e. _V |
114 |
112 1 113
|
fvmpt |
|- ( 1 e. NN -> ( F ` 1 ) = 1 ) |
115 |
15 114
|
ax-mp |
|- ( F ` 1 ) = 1 |
116 |
106 115
|
eqtrdi |
|- ( i = 1 -> ( F ` i ) = 1 ) |
117 |
116
|
breq2d |
|- ( i = 1 -> ( gamma <_ ( F ` i ) <-> gamma <_ 1 ) ) |
118 |
117
|
rspcva |
|- ( ( 1 e. NN /\ A. i e. NN gamma <_ ( F ` i ) ) -> gamma <_ 1 ) |
119 |
15 105 118
|
sylancr |
|- ( T. -> gamma <_ 1 ) |
120 |
44 40
|
elicc2i |
|- ( gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) <-> ( gamma e. RR /\ ( 1 - ( log ` 2 ) ) <_ gamma /\ gamma <_ 1 ) ) |
121 |
14 51 119 120
|
syl3anbrc |
|- ( T. -> gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) ) |
122 |
|
ffn |
|- ( F : NN --> RR -> F Fn NN ) |
123 |
64 122
|
mp1i |
|- ( T. -> F Fn NN ) |
124 |
16 5
|
eleqtrdi |
|- ( ( T. /\ i e. NN ) -> i e. ( ZZ>= ` 1 ) ) |
125 |
|
elfznn |
|- ( k e. ( 1 ... i ) -> k e. NN ) |
126 |
125
|
adantl |
|- ( ( ( T. /\ i e. NN ) /\ k e. ( 1 ... i ) ) -> k e. NN ) |
127 |
126 65
|
syl |
|- ( ( ( T. /\ i e. NN ) /\ k e. ( 1 ... i ) ) -> ( F ` k ) e. RR ) |
128 |
|
elfznn |
|- ( k e. ( 1 ... ( i - 1 ) ) -> k e. NN ) |
129 |
128
|
adantl |
|- ( ( ( T. /\ i e. NN ) /\ k e. ( 1 ... ( i - 1 ) ) ) -> k e. NN ) |
130 |
129 80
|
syl |
|- ( ( ( T. /\ i e. NN ) /\ k e. ( 1 ... ( i - 1 ) ) ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
131 |
124 127 130
|
monoord2 |
|- ( ( T. /\ i e. NN ) -> ( F ` i ) <_ ( F ` 1 ) ) |
132 |
131 115
|
breqtrdi |
|- ( ( T. /\ i e. NN ) -> ( F ` i ) <_ 1 ) |
133 |
99 40
|
elicc2i |
|- ( ( F ` i ) e. ( gamma [,] 1 ) <-> ( ( F ` i ) e. RR /\ gamma <_ ( F ` i ) /\ ( F ` i ) <_ 1 ) ) |
134 |
101 104 132 133
|
syl3anbrc |
|- ( ( T. /\ i e. NN ) -> ( F ` i ) e. ( gamma [,] 1 ) ) |
135 |
134
|
ralrimiva |
|- ( T. -> A. i e. NN ( F ` i ) e. ( gamma [,] 1 ) ) |
136 |
|
ffnfv |
|- ( F : NN --> ( gamma [,] 1 ) <-> ( F Fn NN /\ A. i e. NN ( F ` i ) e. ( gamma [,] 1 ) ) ) |
137 |
123 135 136
|
sylanbrc |
|- ( T. -> F : NN --> ( gamma [,] 1 ) ) |
138 |
|
ffn |
|- ( G : NN --> RR -> G Fn NN ) |
139 |
11 138
|
mp1i |
|- ( T. -> G Fn NN ) |
140 |
11
|
ffvelrni |
|- ( i e. NN -> ( G ` i ) e. RR ) |
141 |
140
|
adantl |
|- ( ( T. /\ i e. NN ) -> ( G ` i ) e. RR ) |
142 |
126 12
|
syl |
|- ( ( ( T. /\ i e. NN ) /\ k e. ( 1 ... i ) ) -> ( G ` k ) e. RR ) |
143 |
129 20
|
syl |
|- ( ( ( T. /\ i e. NN ) /\ k e. ( 1 ... ( i - 1 ) ) ) -> ( G ` k ) <_ ( G ` ( k + 1 ) ) ) |
144 |
124 142 143
|
monoord |
|- ( ( T. /\ i e. NN ) -> ( G ` 1 ) <_ ( G ` i ) ) |
145 |
47 144
|
eqbrtrrid |
|- ( ( T. /\ i e. NN ) -> ( 1 - ( log ` 2 ) ) <_ ( G ` i ) ) |
146 |
44 99
|
elicc2i |
|- ( ( G ` i ) e. ( ( 1 - ( log ` 2 ) ) [,] gamma ) <-> ( ( G ` i ) e. RR /\ ( 1 - ( log ` 2 ) ) <_ ( G ` i ) /\ ( G ` i ) <_ gamma ) ) |
147 |
141 145 22 146
|
syl3anbrc |
|- ( ( T. /\ i e. NN ) -> ( G ` i ) e. ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) |
148 |
147
|
ralrimiva |
|- ( T. -> A. i e. NN ( G ` i ) e. ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) |
149 |
|
ffnfv |
|- ( G : NN --> ( ( 1 - ( log ` 2 ) ) [,] gamma ) <-> ( G Fn NN /\ A. i e. NN ( G ` i ) e. ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) ) |
150 |
139 148 149
|
sylanbrc |
|- ( T. -> G : NN --> ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) |
151 |
121 137 150
|
3jca |
|- ( T. -> ( gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) /\ F : NN --> ( gamma [,] 1 ) /\ G : NN --> ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) ) |
152 |
151
|
mptru |
|- ( gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) /\ F : NN --> ( gamma [,] 1 ) /\ G : NN --> ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) |