Step |
Hyp |
Ref |
Expression |
1 |
|
evenz |
|- ( A e. Even -> A e. ZZ ) |
2 |
1
|
zcnd |
|- ( A e. Even -> A e. CC ) |
3 |
|
evenz |
|- ( B e. Even -> B e. ZZ ) |
4 |
3
|
zcnd |
|- ( B e. Even -> B e. CC ) |
5 |
|
negsub |
|- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
6 |
2 4 5
|
syl2an |
|- ( ( A e. Even /\ B e. Even ) -> ( A + -u B ) = ( A - B ) ) |
7 |
|
enege |
|- ( B e. Even -> -u B e. Even ) |
8 |
|
epee |
|- ( ( A e. Even /\ -u B e. Even ) -> ( A + -u B ) e. Even ) |
9 |
7 8
|
sylan2 |
|- ( ( A e. Even /\ B e. Even ) -> ( A + -u B ) e. Even ) |
10 |
6 9
|
eqeltrrd |
|- ( ( A e. Even /\ B e. Even ) -> ( A - B ) e. Even ) |