| Step | Hyp | Ref | Expression | 
						
							| 1 |  | log2le1 |  |-  ( log ` 2 ) < 1 | 
						
							| 2 |  | 2rp |  |-  2 e. RR+ | 
						
							| 3 |  | relogcl |  |-  ( 2 e. RR+ -> ( log ` 2 ) e. RR ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( log ` 2 ) e. RR | 
						
							| 5 |  | 1re |  |-  1 e. RR | 
						
							| 6 | 4 5 | posdifi |  |-  ( ( log ` 2 ) < 1 <-> 0 < ( 1 - ( log ` 2 ) ) ) | 
						
							| 7 | 1 6 | mpbi |  |-  0 < ( 1 - ( log ` 2 ) ) | 
						
							| 8 |  | emcl |  |-  gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) | 
						
							| 9 | 5 4 | resubcli |  |-  ( 1 - ( log ` 2 ) ) e. RR | 
						
							| 10 | 9 5 | elicc2i |  |-  ( gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) <-> ( gamma e. RR /\ ( 1 - ( log ` 2 ) ) <_ gamma /\ gamma <_ 1 ) ) | 
						
							| 11 | 10 | simp2bi |  |-  ( gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) -> ( 1 - ( log ` 2 ) ) <_ gamma ) | 
						
							| 12 | 8 11 | ax-mp |  |-  ( 1 - ( log ` 2 ) ) <_ gamma | 
						
							| 13 |  | 0re |  |-  0 e. RR | 
						
							| 14 |  | emre |  |-  gamma e. RR | 
						
							| 15 | 13 9 14 | ltletri |  |-  ( ( 0 < ( 1 - ( log ` 2 ) ) /\ ( 1 - ( log ` 2 ) ) <_ gamma ) -> 0 < gamma ) | 
						
							| 16 | 7 12 15 | mp2an |  |-  0 < gamma |