Step |
Hyp |
Ref |
Expression |
1 |
|
log2le1 |
|- ( log ` 2 ) < 1 |
2 |
|
2rp |
|- 2 e. RR+ |
3 |
|
relogcl |
|- ( 2 e. RR+ -> ( log ` 2 ) e. RR ) |
4 |
2 3
|
ax-mp |
|- ( log ` 2 ) e. RR |
5 |
|
1re |
|- 1 e. RR |
6 |
4 5
|
posdifi |
|- ( ( log ` 2 ) < 1 <-> 0 < ( 1 - ( log ` 2 ) ) ) |
7 |
1 6
|
mpbi |
|- 0 < ( 1 - ( log ` 2 ) ) |
8 |
|
emcl |
|- gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) |
9 |
5 4
|
resubcli |
|- ( 1 - ( log ` 2 ) ) e. RR |
10 |
9 5
|
elicc2i |
|- ( gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) <-> ( gamma e. RR /\ ( 1 - ( log ` 2 ) ) <_ gamma /\ gamma <_ 1 ) ) |
11 |
10
|
simp2bi |
|- ( gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) -> ( 1 - ( log ` 2 ) ) <_ gamma ) |
12 |
8 11
|
ax-mp |
|- ( 1 - ( log ` 2 ) ) <_ gamma |
13 |
|
0re |
|- 0 e. RR |
14 |
|
emre |
|- gamma e. RR |
15 |
13 9 14
|
ltletri |
|- ( ( 0 < ( 1 - ( log ` 2 ) ) /\ ( 1 - ( log ` 2 ) ) <_ gamma ) -> 0 < gamma ) |
16 |
7 12 15
|
mp2an |
|- 0 < gamma |