Metamath Proof Explorer


Theorem emre

Description: The Euler-Mascheroni constant is a real number. (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Assertion emre
|- gamma e. RR

Proof

Step Hyp Ref Expression
1 1re
 |-  1 e. RR
2 2rp
 |-  2 e. RR+
3 relogcl
 |-  ( 2 e. RR+ -> ( log ` 2 ) e. RR )
4 2 3 ax-mp
 |-  ( log ` 2 ) e. RR
5 1 4 resubcli
 |-  ( 1 - ( log ` 2 ) ) e. RR
6 iccssre
 |-  ( ( ( 1 - ( log ` 2 ) ) e. RR /\ 1 e. RR ) -> ( ( 1 - ( log ` 2 ) ) [,] 1 ) C_ RR )
7 5 1 6 mp2an
 |-  ( ( 1 - ( log ` 2 ) ) [,] 1 ) C_ RR
8 emcl
 |-  gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 )
9 7 8 sselii
 |-  gamma e. RR