| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bren |
|- ( A ~~ (/) <-> E. f f : A -1-1-onto-> (/) ) |
| 2 |
|
f1ocnv |
|- ( f : A -1-1-onto-> (/) -> `' f : (/) -1-1-onto-> A ) |
| 3 |
|
f1o00 |
|- ( `' f : (/) -1-1-onto-> A <-> ( `' f = (/) /\ A = (/) ) ) |
| 4 |
3
|
simprbi |
|- ( `' f : (/) -1-1-onto-> A -> A = (/) ) |
| 5 |
2 4
|
syl |
|- ( f : A -1-1-onto-> (/) -> A = (/) ) |
| 6 |
5
|
exlimiv |
|- ( E. f f : A -1-1-onto-> (/) -> A = (/) ) |
| 7 |
1 6
|
sylbi |
|- ( A ~~ (/) -> A = (/) ) |
| 8 |
|
0ex |
|- (/) e. _V |
| 9 |
8
|
enref |
|- (/) ~~ (/) |
| 10 |
|
breq1 |
|- ( A = (/) -> ( A ~~ (/) <-> (/) ~~ (/) ) ) |
| 11 |
9 10
|
mpbiri |
|- ( A = (/) -> A ~~ (/) ) |
| 12 |
7 11
|
impbii |
|- ( A ~~ (/) <-> A = (/) ) |