Step |
Hyp |
Ref |
Expression |
1 |
|
bren |
|- ( A ~~ (/) <-> E. f f : A -1-1-onto-> (/) ) |
2 |
|
f1ocnv |
|- ( f : A -1-1-onto-> (/) -> `' f : (/) -1-1-onto-> A ) |
3 |
|
f1o00 |
|- ( `' f : (/) -1-1-onto-> A <-> ( `' f = (/) /\ A = (/) ) ) |
4 |
3
|
simprbi |
|- ( `' f : (/) -1-1-onto-> A -> A = (/) ) |
5 |
2 4
|
syl |
|- ( f : A -1-1-onto-> (/) -> A = (/) ) |
6 |
5
|
exlimiv |
|- ( E. f f : A -1-1-onto-> (/) -> A = (/) ) |
7 |
1 6
|
sylbi |
|- ( A ~~ (/) -> A = (/) ) |
8 |
|
0ex |
|- (/) e. _V |
9 |
|
f1oeq1 |
|- ( f = (/) -> ( f : (/) -1-1-onto-> (/) <-> (/) : (/) -1-1-onto-> (/) ) ) |
10 |
|
f1o0 |
|- (/) : (/) -1-1-onto-> (/) |
11 |
8 9 10
|
ceqsexv2d |
|- E. f f : (/) -1-1-onto-> (/) |
12 |
|
bren |
|- ( (/) ~~ (/) <-> E. f f : (/) -1-1-onto-> (/) ) |
13 |
11 12
|
mpbir |
|- (/) ~~ (/) |
14 |
|
breq1 |
|- ( A = (/) -> ( A ~~ (/) <-> (/) ~~ (/) ) ) |
15 |
13 14
|
mpbiri |
|- ( A = (/) -> A ~~ (/) ) |
16 |
7 15
|
impbii |
|- ( A ~~ (/) <-> A = (/) ) |