Step |
Hyp |
Ref |
Expression |
1 |
|
encv |
|- ( (/) ~~ A -> ( (/) e. _V /\ A e. _V ) ) |
2 |
|
breng |
|- ( ( (/) e. _V /\ A e. _V ) -> ( (/) ~~ A <-> E. f f : (/) -1-1-onto-> A ) ) |
3 |
1 2
|
syl |
|- ( (/) ~~ A -> ( (/) ~~ A <-> E. f f : (/) -1-1-onto-> A ) ) |
4 |
3
|
ibi |
|- ( (/) ~~ A -> E. f f : (/) -1-1-onto-> A ) |
5 |
|
f1o00 |
|- ( f : (/) -1-1-onto-> A <-> ( f = (/) /\ A = (/) ) ) |
6 |
5
|
simprbi |
|- ( f : (/) -1-1-onto-> A -> A = (/) ) |
7 |
6
|
exlimiv |
|- ( E. f f : (/) -1-1-onto-> A -> A = (/) ) |
8 |
4 7
|
syl |
|- ( (/) ~~ A -> A = (/) ) |
9 |
|
0ex |
|- (/) e. _V |
10 |
|
f1oeq1 |
|- ( f = (/) -> ( f : (/) -1-1-onto-> (/) <-> (/) : (/) -1-1-onto-> (/) ) ) |
11 |
|
f1o0 |
|- (/) : (/) -1-1-onto-> (/) |
12 |
9 10 11
|
ceqsexv2d |
|- E. f f : (/) -1-1-onto-> (/) |
13 |
|
breng |
|- ( ( (/) e. _V /\ (/) e. _V ) -> ( (/) ~~ (/) <-> E. f f : (/) -1-1-onto-> (/) ) ) |
14 |
9 9 13
|
mp2an |
|- ( (/) ~~ (/) <-> E. f f : (/) -1-1-onto-> (/) ) |
15 |
12 14
|
mpbir |
|- (/) ~~ (/) |
16 |
|
breq2 |
|- ( A = (/) -> ( (/) ~~ A <-> (/) ~~ (/) ) ) |
17 |
15 16
|
mpbiri |
|- ( A = (/) -> (/) ~~ A ) |
18 |
8 17
|
impbii |
|- ( (/) ~~ A <-> A = (/) ) |