Metamath Proof Explorer


Theorem en0r

Description: The empty set is equinumerous only to itself. (Contributed by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion en0r
|- ( (/) ~~ A <-> A = (/) )

Proof

Step Hyp Ref Expression
1 encv
 |-  ( (/) ~~ A -> ( (/) e. _V /\ A e. _V ) )
2 breng
 |-  ( ( (/) e. _V /\ A e. _V ) -> ( (/) ~~ A <-> E. f f : (/) -1-1-onto-> A ) )
3 1 2 syl
 |-  ( (/) ~~ A -> ( (/) ~~ A <-> E. f f : (/) -1-1-onto-> A ) )
4 3 ibi
 |-  ( (/) ~~ A -> E. f f : (/) -1-1-onto-> A )
5 f1o00
 |-  ( f : (/) -1-1-onto-> A <-> ( f = (/) /\ A = (/) ) )
6 5 simprbi
 |-  ( f : (/) -1-1-onto-> A -> A = (/) )
7 6 exlimiv
 |-  ( E. f f : (/) -1-1-onto-> A -> A = (/) )
8 4 7 syl
 |-  ( (/) ~~ A -> A = (/) )
9 0ex
 |-  (/) e. _V
10 f1oeq1
 |-  ( f = (/) -> ( f : (/) -1-1-onto-> (/) <-> (/) : (/) -1-1-onto-> (/) ) )
11 f1o0
 |-  (/) : (/) -1-1-onto-> (/)
12 9 10 11 ceqsexv2d
 |-  E. f f : (/) -1-1-onto-> (/)
13 breng
 |-  ( ( (/) e. _V /\ (/) e. _V ) -> ( (/) ~~ (/) <-> E. f f : (/) -1-1-onto-> (/) ) )
14 9 9 13 mp2an
 |-  ( (/) ~~ (/) <-> E. f f : (/) -1-1-onto-> (/) )
15 12 14 mpbir
 |-  (/) ~~ (/)
16 breq2
 |-  ( A = (/) -> ( (/) ~~ A <-> (/) ~~ (/) ) )
17 15 16 mpbiri
 |-  ( A = (/) -> (/) ~~ A )
18 8 17 impbii
 |-  ( (/) ~~ A <-> A = (/) )