Step |
Hyp |
Ref |
Expression |
1 |
|
df1o2 |
|- 1o = { (/) } |
2 |
1
|
breq2i |
|- ( A ~~ 1o <-> A ~~ { (/) } ) |
3 |
|
encv |
|- ( A ~~ { (/) } -> ( A e. _V /\ { (/) } e. _V ) ) |
4 |
|
breng |
|- ( ( A e. _V /\ { (/) } e. _V ) -> ( A ~~ { (/) } <-> E. f f : A -1-1-onto-> { (/) } ) ) |
5 |
3 4
|
syl |
|- ( A ~~ { (/) } -> ( A ~~ { (/) } <-> E. f f : A -1-1-onto-> { (/) } ) ) |
6 |
5
|
ibi |
|- ( A ~~ { (/) } -> E. f f : A -1-1-onto-> { (/) } ) |
7 |
2 6
|
sylbi |
|- ( A ~~ 1o -> E. f f : A -1-1-onto-> { (/) } ) |
8 |
|
f1ocnv |
|- ( f : A -1-1-onto-> { (/) } -> `' f : { (/) } -1-1-onto-> A ) |
9 |
|
f1ofo |
|- ( `' f : { (/) } -1-1-onto-> A -> `' f : { (/) } -onto-> A ) |
10 |
|
forn |
|- ( `' f : { (/) } -onto-> A -> ran `' f = A ) |
11 |
9 10
|
syl |
|- ( `' f : { (/) } -1-1-onto-> A -> ran `' f = A ) |
12 |
|
f1of |
|- ( `' f : { (/) } -1-1-onto-> A -> `' f : { (/) } --> A ) |
13 |
|
0ex |
|- (/) e. _V |
14 |
13
|
fsn2 |
|- ( `' f : { (/) } --> A <-> ( ( `' f ` (/) ) e. A /\ `' f = { <. (/) , ( `' f ` (/) ) >. } ) ) |
15 |
14
|
simprbi |
|- ( `' f : { (/) } --> A -> `' f = { <. (/) , ( `' f ` (/) ) >. } ) |
16 |
12 15
|
syl |
|- ( `' f : { (/) } -1-1-onto-> A -> `' f = { <. (/) , ( `' f ` (/) ) >. } ) |
17 |
16
|
rneqd |
|- ( `' f : { (/) } -1-1-onto-> A -> ran `' f = ran { <. (/) , ( `' f ` (/) ) >. } ) |
18 |
13
|
rnsnop |
|- ran { <. (/) , ( `' f ` (/) ) >. } = { ( `' f ` (/) ) } |
19 |
17 18
|
eqtrdi |
|- ( `' f : { (/) } -1-1-onto-> A -> ran `' f = { ( `' f ` (/) ) } ) |
20 |
11 19
|
eqtr3d |
|- ( `' f : { (/) } -1-1-onto-> A -> A = { ( `' f ` (/) ) } ) |
21 |
|
fvex |
|- ( `' f ` (/) ) e. _V |
22 |
|
sneq |
|- ( x = ( `' f ` (/) ) -> { x } = { ( `' f ` (/) ) } ) |
23 |
22
|
eqeq2d |
|- ( x = ( `' f ` (/) ) -> ( A = { x } <-> A = { ( `' f ` (/) ) } ) ) |
24 |
21 23
|
spcev |
|- ( A = { ( `' f ` (/) ) } -> E. x A = { x } ) |
25 |
8 20 24
|
3syl |
|- ( f : A -1-1-onto-> { (/) } -> E. x A = { x } ) |
26 |
25
|
exlimiv |
|- ( E. f f : A -1-1-onto-> { (/) } -> E. x A = { x } ) |
27 |
7 26
|
syl |
|- ( A ~~ 1o -> E. x A = { x } ) |
28 |
|
vex |
|- x e. _V |
29 |
28
|
ensn1 |
|- { x } ~~ 1o |
30 |
|
breq1 |
|- ( A = { x } -> ( A ~~ 1o <-> { x } ~~ 1o ) ) |
31 |
29 30
|
mpbiri |
|- ( A = { x } -> A ~~ 1o ) |
32 |
31
|
exlimiv |
|- ( E. x A = { x } -> A ~~ 1o ) |
33 |
27 32
|
impbii |
|- ( A ~~ 1o <-> E. x A = { x } ) |