Metamath Proof Explorer


Theorem en1

Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004) Avoid ax-un . (Revised by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion en1
|- ( A ~~ 1o <-> E. x A = { x } )

Proof

Step Hyp Ref Expression
1 df1o2
 |-  1o = { (/) }
2 1 breq2i
 |-  ( A ~~ 1o <-> A ~~ { (/) } )
3 encv
 |-  ( A ~~ { (/) } -> ( A e. _V /\ { (/) } e. _V ) )
4 breng
 |-  ( ( A e. _V /\ { (/) } e. _V ) -> ( A ~~ { (/) } <-> E. f f : A -1-1-onto-> { (/) } ) )
5 3 4 syl
 |-  ( A ~~ { (/) } -> ( A ~~ { (/) } <-> E. f f : A -1-1-onto-> { (/) } ) )
6 5 ibi
 |-  ( A ~~ { (/) } -> E. f f : A -1-1-onto-> { (/) } )
7 2 6 sylbi
 |-  ( A ~~ 1o -> E. f f : A -1-1-onto-> { (/) } )
8 f1ocnv
 |-  ( f : A -1-1-onto-> { (/) } -> `' f : { (/) } -1-1-onto-> A )
9 f1ofo
 |-  ( `' f : { (/) } -1-1-onto-> A -> `' f : { (/) } -onto-> A )
10 forn
 |-  ( `' f : { (/) } -onto-> A -> ran `' f = A )
11 9 10 syl
 |-  ( `' f : { (/) } -1-1-onto-> A -> ran `' f = A )
12 f1of
 |-  ( `' f : { (/) } -1-1-onto-> A -> `' f : { (/) } --> A )
13 0ex
 |-  (/) e. _V
14 13 fsn2
 |-  ( `' f : { (/) } --> A <-> ( ( `' f ` (/) ) e. A /\ `' f = { <. (/) , ( `' f ` (/) ) >. } ) )
15 14 simprbi
 |-  ( `' f : { (/) } --> A -> `' f = { <. (/) , ( `' f ` (/) ) >. } )
16 12 15 syl
 |-  ( `' f : { (/) } -1-1-onto-> A -> `' f = { <. (/) , ( `' f ` (/) ) >. } )
17 16 rneqd
 |-  ( `' f : { (/) } -1-1-onto-> A -> ran `' f = ran { <. (/) , ( `' f ` (/) ) >. } )
18 13 rnsnop
 |-  ran { <. (/) , ( `' f ` (/) ) >. } = { ( `' f ` (/) ) }
19 17 18 eqtrdi
 |-  ( `' f : { (/) } -1-1-onto-> A -> ran `' f = { ( `' f ` (/) ) } )
20 11 19 eqtr3d
 |-  ( `' f : { (/) } -1-1-onto-> A -> A = { ( `' f ` (/) ) } )
21 fvex
 |-  ( `' f ` (/) ) e. _V
22 sneq
 |-  ( x = ( `' f ` (/) ) -> { x } = { ( `' f ` (/) ) } )
23 22 eqeq2d
 |-  ( x = ( `' f ` (/) ) -> ( A = { x } <-> A = { ( `' f ` (/) ) } ) )
24 21 23 spcev
 |-  ( A = { ( `' f ` (/) ) } -> E. x A = { x } )
25 8 20 24 3syl
 |-  ( f : A -1-1-onto-> { (/) } -> E. x A = { x } )
26 25 exlimiv
 |-  ( E. f f : A -1-1-onto-> { (/) } -> E. x A = { x } )
27 7 26 syl
 |-  ( A ~~ 1o -> E. x A = { x } )
28 vex
 |-  x e. _V
29 28 ensn1
 |-  { x } ~~ 1o
30 breq1
 |-  ( A = { x } -> ( A ~~ 1o <-> { x } ~~ 1o ) )
31 29 30 mpbiri
 |-  ( A = { x } -> A ~~ 1o )
32 31 exlimiv
 |-  ( E. x A = { x } -> A ~~ 1o )
33 27 32 impbii
 |-  ( A ~~ 1o <-> E. x A = { x } )