Step |
Hyp |
Ref |
Expression |
1 |
|
df1o2 |
|- 1o = { (/) } |
2 |
1
|
breq2i |
|- ( A ~~ 1o <-> A ~~ { (/) } ) |
3 |
|
bren |
|- ( A ~~ { (/) } <-> E. f f : A -1-1-onto-> { (/) } ) |
4 |
2 3
|
bitri |
|- ( A ~~ 1o <-> E. f f : A -1-1-onto-> { (/) } ) |
5 |
|
f1ocnv |
|- ( f : A -1-1-onto-> { (/) } -> `' f : { (/) } -1-1-onto-> A ) |
6 |
|
f1ofo |
|- ( `' f : { (/) } -1-1-onto-> A -> `' f : { (/) } -onto-> A ) |
7 |
|
forn |
|- ( `' f : { (/) } -onto-> A -> ran `' f = A ) |
8 |
6 7
|
syl |
|- ( `' f : { (/) } -1-1-onto-> A -> ran `' f = A ) |
9 |
|
f1of |
|- ( `' f : { (/) } -1-1-onto-> A -> `' f : { (/) } --> A ) |
10 |
|
0ex |
|- (/) e. _V |
11 |
10
|
fsn2 |
|- ( `' f : { (/) } --> A <-> ( ( `' f ` (/) ) e. A /\ `' f = { <. (/) , ( `' f ` (/) ) >. } ) ) |
12 |
11
|
simprbi |
|- ( `' f : { (/) } --> A -> `' f = { <. (/) , ( `' f ` (/) ) >. } ) |
13 |
9 12
|
syl |
|- ( `' f : { (/) } -1-1-onto-> A -> `' f = { <. (/) , ( `' f ` (/) ) >. } ) |
14 |
13
|
rneqd |
|- ( `' f : { (/) } -1-1-onto-> A -> ran `' f = ran { <. (/) , ( `' f ` (/) ) >. } ) |
15 |
10
|
rnsnop |
|- ran { <. (/) , ( `' f ` (/) ) >. } = { ( `' f ` (/) ) } |
16 |
14 15
|
eqtrdi |
|- ( `' f : { (/) } -1-1-onto-> A -> ran `' f = { ( `' f ` (/) ) } ) |
17 |
8 16
|
eqtr3d |
|- ( `' f : { (/) } -1-1-onto-> A -> A = { ( `' f ` (/) ) } ) |
18 |
|
fvex |
|- ( `' f ` (/) ) e. _V |
19 |
|
sneq |
|- ( x = ( `' f ` (/) ) -> { x } = { ( `' f ` (/) ) } ) |
20 |
19
|
eqeq2d |
|- ( x = ( `' f ` (/) ) -> ( A = { x } <-> A = { ( `' f ` (/) ) } ) ) |
21 |
18 20
|
spcev |
|- ( A = { ( `' f ` (/) ) } -> E. x A = { x } ) |
22 |
5 17 21
|
3syl |
|- ( f : A -1-1-onto-> { (/) } -> E. x A = { x } ) |
23 |
22
|
exlimiv |
|- ( E. f f : A -1-1-onto-> { (/) } -> E. x A = { x } ) |
24 |
4 23
|
sylbi |
|- ( A ~~ 1o -> E. x A = { x } ) |
25 |
|
vex |
|- x e. _V |
26 |
25
|
ensn1 |
|- { x } ~~ 1o |
27 |
|
breq1 |
|- ( A = { x } -> ( A ~~ 1o <-> { x } ~~ 1o ) ) |
28 |
26 27
|
mpbiri |
|- ( A = { x } -> A ~~ 1o ) |
29 |
28
|
exlimiv |
|- ( E. x A = { x } -> A ~~ 1o ) |
30 |
24 29
|
impbii |
|- ( A ~~ 1o <-> E. x A = { x } ) |