Metamath Proof Explorer


Theorem en1b

Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015)

Ref Expression
Assertion en1b
|- ( A ~~ 1o <-> A = { U. A } )

Proof

Step Hyp Ref Expression
1 en1
 |-  ( A ~~ 1o <-> E. x A = { x } )
2 id
 |-  ( A = { x } -> A = { x } )
3 unieq
 |-  ( A = { x } -> U. A = U. { x } )
4 vex
 |-  x e. _V
5 4 unisn
 |-  U. { x } = x
6 3 5 eqtrdi
 |-  ( A = { x } -> U. A = x )
7 6 sneqd
 |-  ( A = { x } -> { U. A } = { x } )
8 2 7 eqtr4d
 |-  ( A = { x } -> A = { U. A } )
9 8 exlimiv
 |-  ( E. x A = { x } -> A = { U. A } )
10 1 9 sylbi
 |-  ( A ~~ 1o -> A = { U. A } )
11 id
 |-  ( A = { U. A } -> A = { U. A } )
12 snex
 |-  { U. A } e. _V
13 11 12 eqeltrdi
 |-  ( A = { U. A } -> A e. _V )
14 13 uniexd
 |-  ( A = { U. A } -> U. A e. _V )
15 ensn1g
 |-  ( U. A e. _V -> { U. A } ~~ 1o )
16 14 15 syl
 |-  ( A = { U. A } -> { U. A } ~~ 1o )
17 11 16 eqbrtrd
 |-  ( A = { U. A } -> A ~~ 1o )
18 10 17 impbii
 |-  ( A ~~ 1o <-> A = { U. A } )