| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1onn |  |-  1o e. _om | 
						
							| 2 |  | ssid |  |-  1o C_ 1o | 
						
							| 3 |  | ssnnfi |  |-  ( ( 1o e. _om /\ 1o C_ 1o ) -> 1o e. Fin ) | 
						
							| 4 | 1 2 3 | mp2an |  |-  1o e. Fin | 
						
							| 5 |  | enfii |  |-  ( ( 1o e. Fin /\ B ~~ 1o ) -> B e. Fin ) | 
						
							| 6 | 4 5 | mpan |  |-  ( B ~~ 1o -> B e. Fin ) | 
						
							| 7 | 6 | adantl |  |-  ( ( A e. B /\ B ~~ 1o ) -> B e. Fin ) | 
						
							| 8 |  | snssi |  |-  ( A e. B -> { A } C_ B ) | 
						
							| 9 | 8 | adantr |  |-  ( ( A e. B /\ B ~~ 1o ) -> { A } C_ B ) | 
						
							| 10 |  | ensn1g |  |-  ( A e. B -> { A } ~~ 1o ) | 
						
							| 11 |  | ensym |  |-  ( B ~~ 1o -> 1o ~~ B ) | 
						
							| 12 |  | entr |  |-  ( ( { A } ~~ 1o /\ 1o ~~ B ) -> { A } ~~ B ) | 
						
							| 13 | 10 11 12 | syl2an |  |-  ( ( A e. B /\ B ~~ 1o ) -> { A } ~~ B ) | 
						
							| 14 |  | fisseneq |  |-  ( ( B e. Fin /\ { A } C_ B /\ { A } ~~ B ) -> { A } = B ) | 
						
							| 15 | 7 9 13 14 | syl3anc |  |-  ( ( A e. B /\ B ~~ 1o ) -> { A } = B ) | 
						
							| 16 | 15 | eqcomd |  |-  ( ( A e. B /\ B ~~ 1o ) -> B = { A } ) |