Description: { (/) } is the only topology with one element. (Contributed by FL, 18-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en1top | |- ( J e. Top -> ( J ~~ 1o <-> J = { (/) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0opn | |- ( J e. Top -> (/) e. J ) |
|
| 2 | en1eqsn | |- ( ( (/) e. J /\ J ~~ 1o ) -> J = { (/) } ) |
|
| 3 | 2 | ex | |- ( (/) e. J -> ( J ~~ 1o -> J = { (/) } ) ) |
| 4 | 1 3 | syl | |- ( J e. Top -> ( J ~~ 1o -> J = { (/) } ) ) |
| 5 | id | |- ( J = { (/) } -> J = { (/) } ) |
|
| 6 | 0ex | |- (/) e. _V |
|
| 7 | 6 | ensn1 | |- { (/) } ~~ 1o |
| 8 | 5 7 | eqbrtrdi | |- ( J = { (/) } -> J ~~ 1o ) |
| 9 | 4 8 | impbid1 | |- ( J e. Top -> ( J ~~ 1o <-> J = { (/) } ) ) |