Metamath Proof Explorer


Theorem en1uniel

Description: A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015) Avoid ax-un . (Revised by BTernaryTau, 24-Sep-2024)

Ref Expression
Assertion en1uniel
|- ( S ~~ 1o -> U. S e. S )

Proof

Step Hyp Ref Expression
1 en1b
 |-  ( S ~~ 1o <-> S = { U. S } )
2 eqsnuniex
 |-  ( S = { U. S } -> U. S e. _V )
3 1 2 sylbi
 |-  ( S ~~ 1o -> U. S e. _V )
4 snidg
 |-  ( U. S e. _V -> U. S e. { U. S } )
5 3 4 syl
 |-  ( S ~~ 1o -> U. S e. { U. S } )
6 1 biimpi
 |-  ( S ~~ 1o -> S = { U. S } )
7 5 6 eleqtrrd
 |-  ( S ~~ 1o -> U. S e. S )