Metamath Proof Explorer


Theorem en1unielOLD

Description: Obsolete version of en1uniel as of 24-Sep-2024. (Contributed by Stefan O'Rear, 16-Aug-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion en1unielOLD
|- ( S ~~ 1o -> U. S e. S )

Proof

Step Hyp Ref Expression
1 relen
 |-  Rel ~~
2 1 brrelex1i
 |-  ( S ~~ 1o -> S e. _V )
3 uniexg
 |-  ( S e. _V -> U. S e. _V )
4 snidg
 |-  ( U. S e. _V -> U. S e. { U. S } )
5 2 3 4 3syl
 |-  ( S ~~ 1o -> U. S e. { U. S } )
6 en1b
 |-  ( S ~~ 1o <-> S = { U. S } )
7 6 biimpi
 |-  ( S ~~ 1o -> S = { U. S } )
8 5 7 eleqtrrd
 |-  ( S ~~ 1o -> U. S e. S )