Description: A set equinumerous to ordinal 2 is a pair. (Contributed by Mario Carneiro, 5-Jan-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | en2 | |- ( A ~~ 2o -> E. x E. y A = { x , y } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn | |- 1o e. _om |
|
2 | df-2o | |- 2o = suc 1o |
|
3 | en1 | |- ( ( A \ { x } ) ~~ 1o <-> E. y ( A \ { x } ) = { y } ) |
|
4 | 3 | biimpi | |- ( ( A \ { x } ) ~~ 1o -> E. y ( A \ { x } ) = { y } ) |
5 | df-pr | |- { x , y } = ( { x } u. { y } ) |
|
6 | 5 | enp1ilem | |- ( x e. A -> ( ( A \ { x } ) = { y } -> A = { x , y } ) ) |
7 | 6 | eximdv | |- ( x e. A -> ( E. y ( A \ { x } ) = { y } -> E. y A = { x , y } ) ) |
8 | 1 2 4 7 | enp1i | |- ( A ~~ 2o -> E. x E. y A = { x , y } ) |