Description: A set equinumerous to ordinal 2 is a pair. (Contributed by Mario Carneiro, 5-Jan-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en2 | |- ( A ~~ 2o -> E. x E. y A = { x , y } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1on | |- 1o e. On | |
| 2 | 1 | onordi | |- Ord 1o | 
| 3 | df-2o | |- 2o = suc 1o | |
| 4 | en1 |  |-  ( ( A \ { x } ) ~~ 1o <-> E. y ( A \ { x } ) = { y } ) | |
| 5 | 4 | biimpi |  |-  ( ( A \ { x } ) ~~ 1o -> E. y ( A \ { x } ) = { y } ) | 
| 6 | df-pr |  |-  { x , y } = ( { x } u. { y } ) | |
| 7 | 6 | enp1ilem |  |-  ( x e. A -> ( ( A \ { x } ) = { y } -> A = { x , y } ) ) | 
| 8 | 7 | eximdv |  |-  ( x e. A -> ( E. y ( A \ { x } ) = { y } -> E. y A = { x , y } ) ) | 
| 9 | 2 3 5 8 | enp1i |  |-  ( A ~~ 2o -> E. x E. y A = { x , y } ) |