Metamath Proof Explorer


Theorem en2

Description: A set equinumerous to ordinal 2 is a pair. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion en2
|- ( A ~~ 2o -> E. x E. y A = { x , y } )

Proof

Step Hyp Ref Expression
1 1onn
 |-  1o e. _om
2 df-2o
 |-  2o = suc 1o
3 en1
 |-  ( ( A \ { x } ) ~~ 1o <-> E. y ( A \ { x } ) = { y } )
4 3 biimpi
 |-  ( ( A \ { x } ) ~~ 1o -> E. y ( A \ { x } ) = { y } )
5 df-pr
 |-  { x , y } = ( { x } u. { y } )
6 5 enp1ilem
 |-  ( x e. A -> ( ( A \ { x } ) = { y } -> A = { x , y } ) )
7 6 eximdv
 |-  ( x e. A -> ( E. y ( A \ { x } ) = { y } -> E. y A = { x , y } ) )
8 1 2 4 7 enp1i
 |-  ( A ~~ 2o -> E. x E. y A = { x , y } )