Metamath Proof Explorer


Theorem en2d

Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004) (Revised by Mario Carneiro, 12-May-2014) (Revised by AV, 4-Aug-2024)

Ref Expression
Hypotheses en2d.1
|- ( ph -> A e. V )
en2d.2
|- ( ph -> B e. W )
en2d.3
|- ( ph -> ( x e. A -> C e. X ) )
en2d.4
|- ( ph -> ( y e. B -> D e. Y ) )
en2d.5
|- ( ph -> ( ( x e. A /\ y = C ) <-> ( y e. B /\ x = D ) ) )
Assertion en2d
|- ( ph -> A ~~ B )

Proof

Step Hyp Ref Expression
1 en2d.1
 |-  ( ph -> A e. V )
2 en2d.2
 |-  ( ph -> B e. W )
3 en2d.3
 |-  ( ph -> ( x e. A -> C e. X ) )
4 en2d.4
 |-  ( ph -> ( y e. B -> D e. Y ) )
5 en2d.5
 |-  ( ph -> ( ( x e. A /\ y = C ) <-> ( y e. B /\ x = D ) ) )
6 eqid
 |-  ( x e. A |-> C ) = ( x e. A |-> C )
7 3 imp
 |-  ( ( ph /\ x e. A ) -> C e. X )
8 4 imp
 |-  ( ( ph /\ y e. B ) -> D e. Y )
9 6 7 8 5 f1od
 |-  ( ph -> ( x e. A |-> C ) : A -1-1-onto-> B )
10 f1oen2g
 |-  ( ( A e. V /\ B e. W /\ ( x e. A |-> C ) : A -1-1-onto-> B ) -> A ~~ B )
11 1 2 9 10 syl3anc
 |-  ( ph -> A ~~ B )