Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004) (Revised by Mario Carneiro, 12-May-2014) (Revised by AV, 4-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | en2d.1 | |- ( ph -> A e. V ) |
|
en2d.2 | |- ( ph -> B e. W ) |
||
en2d.3 | |- ( ph -> ( x e. A -> C e. X ) ) |
||
en2d.4 | |- ( ph -> ( y e. B -> D e. Y ) ) |
||
en2d.5 | |- ( ph -> ( ( x e. A /\ y = C ) <-> ( y e. B /\ x = D ) ) ) |
||
Assertion | en2d | |- ( ph -> A ~~ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2d.1 | |- ( ph -> A e. V ) |
|
2 | en2d.2 | |- ( ph -> B e. W ) |
|
3 | en2d.3 | |- ( ph -> ( x e. A -> C e. X ) ) |
|
4 | en2d.4 | |- ( ph -> ( y e. B -> D e. Y ) ) |
|
5 | en2d.5 | |- ( ph -> ( ( x e. A /\ y = C ) <-> ( y e. B /\ x = D ) ) ) |
|
6 | eqid | |- ( x e. A |-> C ) = ( x e. A |-> C ) |
|
7 | 3 | imp | |- ( ( ph /\ x e. A ) -> C e. X ) |
8 | 4 | imp | |- ( ( ph /\ y e. B ) -> D e. Y ) |
9 | 6 7 8 5 | f1od | |- ( ph -> ( x e. A |-> C ) : A -1-1-onto-> B ) |
10 | f1oen2g | |- ( ( A e. V /\ B e. W /\ ( x e. A |-> C ) : A -1-1-onto-> B ) -> A ~~ B ) |
|
11 | 1 2 9 10 | syl3anc | |- ( ph -> A ~~ B ) |